Zero-Divisor Graphs of Order-Decreasing Full Transformation Semigroups

Kemal TOKER ${ }^{1, *}$, Zeynep EŞiDiR ${ }^{2}$
${ }^{1}$ Harran Üniversitesi, Fen Edebiyat Fakültesi, Matematik Bölümü, Şanlıurfa, TÜRKIYE.
${ }^{2}$ Harran Üniversitesi, Fen Bilimleri Enstitüsü, Matematik Bölümü, Şanlıurfa, TÜRKiYE.

Corresponding author* e-posta: ktoker@harran.edu.tr ORCID ID: http://orcid.org/0000-0003-3696-1324 zeynep_esidir@hotmail.com ORCID ID: http://orcid.org/0000-0002-0862-8744
Geliş Tarihi: 26.10.2021 Kabul Tarihi: 14.02.2022

Keywords

Zero-divisor graph; Order-decreasing transformations; Diameter; Clique number

Abstract

Let $n \in \mathbb{Z}^{+}$and $X_{n}=\{1,2, \ldots, n\}$ be a finite set. Let D_{n} be the order-decreasing full transformation semigroup on X_{n}. In this paper, we find the left zero-divisors, the right zero-divisors and two sided zerodivisors of D_{n}. Moreover, for $n \geq 4$ we define an undirected graph $\Gamma\left(D_{n}\right)$ whose vertices are two-sided zero divisors of D_{n} excluding the zero element θ of D_{n}. In the graph, distinct two vertices α and β are adjacent if and only if $\alpha \beta=\theta=\beta \alpha$. In this paper, we prove that $\Gamma\left(D_{n}\right)$ is a connected graph, and we find diameter, girth, the degrees of all vertices, the maximum degree and the minimum degree in $\Gamma\left(D_{n}\right)$. Moreover, we give lower bounds for clique number and choromatic number of $\Gamma\left(D_{n}\right)$.

Sıra Azaltan Dönüşüm Yarıgruplarının Sıfır-Bölen Çizgesi

	Öz
Anahtar kelimeler Sıfır-bölen çizge; Sıra azaltan dönüşümler; Çap; Klik sayısı	$n \in \mathbb{Z}^{+}$olmak üzere $X_{n}=\{1,2, \ldots, n\}$ sonlu bir küme olsun. X_{n} üzerindeki tüm sıra azaltan dönüşümlerin yarıgrubu D_{n} olsun. Bu çalışmada D_{n} yarıgrubunun sol sıfır bölenleri, sağ sıfir bölenleri ve iki-yönlü sıfır bölenleri bulunmuştur. Ayrıca, $n \geq 4$ için köşeleri D_{n} yarıgrubunun sıfır elemanı θ dışındaki iki-yönlü sıfır bölenleri olmak üzere $\Gamma\left(D_{n}\right)$ yönsüz çizgesi tanımlanmıştır. Bu çizgede α ve β farklı köşeler olmak üzere bu iki köşenin çizgede bir kenar oluşturması için gerek ve yeter koşul $\alpha \beta=$ $\theta=\beta \alpha$ olmasıdır. Bu çalışmada $\Gamma\left(D_{n}\right)$ çizgesinin bağlantılı olduğu ispatlanmış olup, çizgenin çapı, çizgedeki en kısa devir uzunluğu, tüm köşelerin dereceleri, en büyük derece ve en küçük derece bulunmuştur. Ayrıca, $\Gamma\left(D_{n}\right)$ çizgesinde klik ve kromatik sayıları için bir alt sınır bulunmuştur.

1. Introduction and Definitions

The zero-divisor graphs were first defined on commutiative rings by Beck (Beck 1988). The zero element of ring is a vertex in the zero-divisor graph within Beck's definition, then the standart zerodivisor graphs on commutative rings were defined by Anderson and Livingston (Anderson and Livingston 1999). Let R be a commutative ring and $Z(R)$ be the set of zero-divisor elements of R. The zero-divisor graph of R is defined by the vertex set $Z(R) \backslash\{0\}$ and distinct two vertices α and β are adjacent if and only if $\alpha \beta=0$. The zero-divisor
graph of R is denoted by $\Gamma(R)$. DeMeyer et al. have considered this definition on commutative semigroups, they found some basic properties of zero-divisor graphs of commutative semigroups (DeMeyer et al. 2002, DeMeyer et al. 2005). There are some papers about zero-divisor graphs of some special classes of commutative semigroups (Das et al. 2013, Toker 2016). Redmond defined some zerodivisor graphs for the noncommutative rings (Redmond 2002). Let R be a noncommutative ring and $Z_{T}(R)$ be the set of two-sided zero-divisor elements of R. Then zero-divisor graph of R is defined by the vertex set $Z_{T}(R) \backslash\{0\}$ and distinct two vertices α and β are adjacent if and only if $\alpha \beta=$
$0=\beta \alpha$. The zero-divisor graph of R is denoted by $\Gamma(R)$. If R is a noncommutative ring, then $\Gamma(R)$ does not need to be connected graph. Moreover, these definitions can be considered on noncommutative semigroups. Let S be a semigroup with 0 (zero), $S^{*}=S \backslash\{0\}$ and
$T(S)=\left\{z \in S \mid z x=0=y z\right.$ for some $\left.x, y \in S^{*}\right\}$.

If $T(S) \backslash\{0\} \neq \varnothing$, then we similarly define the (undirected) zero-divisor graph $\Gamma(S)$ whose the set of vertices is $T(S) \backslash\{0\}$ and distinct two vertices x and y are adjacent by an edge if and only if $x y=$ $0=y x$ for some $x, y \in T(S) \backslash\{0\}$.

Recently, some properties of zero-divisor graphs of Catalan monoid and zero-divisor graphs of partial transformation semigroups researched (Toker 2021, Toker 2021). In this paper, our aim is research of zero-divisor graphs of order-decreasing transformation semigroups. Let $n \in \mathbb{Z}^{+}$and $X_{n}=$ $\{1,2, \ldots, n\}$ be a finite set. Let T_{n} and D_{n} be the full transformation semigroup on X_{n}, order-decreasing full transformation semigroup on X_{n}, respectively. Then,
$D_{n}=\left\{\alpha \in T_{n} \mid\left(\forall x \in X_{n}\right) x \alpha \leq x\right\}$.
D_{n} is a noncommutative semigroup for $n \geq 3$ and it is also a monoid. Let $1_{D_{n}}$ be the identity element of D_{n}. Then $x 1_{D_{n}}=x$ for all $x \in X_{n}$. Umar studied some algebraic properties of $D_{n} \backslash\left\{1_{D_{n}}\right\}$ (Umar 1992).

It is clear that $\left|D_{n}\right|=n$! and $1 \alpha=1$ for all $\alpha \in D_{n}$. Let $\theta \in D_{n}$ such that $x \theta=1$ for all $x \in X_{n}$. Then we have $\alpha \theta=\theta \alpha=\theta$ for all $\alpha \in D_{n}$, so θ is the zero element of D_{n}. Throughout the paper, the zero element of D_{n} is denoted by θ. Let $D_{n}{ }^{*}=D_{n} \backslash\{\theta\}$ for $n \geq 2$. We define the following sets
$L=L\left(D_{n}\right)=\left\{\alpha \in D_{n} \mid \alpha \beta=\theta\right.$ for some $\left.\beta \in D_{n}{ }^{*}\right\}$,
$R=R\left(D_{n}\right)=\left\{\alpha \in D_{n} \mid \beta \alpha=\theta\right.$ for some $\left.\beta \in D_{n}{ }^{*}\right\}$,
$T=T\left(D_{n}\right)$
$=\left\{\alpha \in D_{n} \mid \alpha \beta=\gamma \alpha=\theta\right.$ for some $\left.\gamma, \beta \in D_{n}{ }^{*}\right\}$
which are called the set of left zero-divisors, right zero-divisors and two-sided zero-divisors of D_{n}. Then it is clear that $T=L \cap R$.

For semigroup terminology see (Howie 1995) and graph theory terminology see (Thulasiraman et al. 2015).

2. Preliminaries

In this section, we find the set of left zero-divisors, right zero-divisors and two sided zero-divisors of D_{n}, and then we find their numbers.

Lemma 2.1 Let $n \geq 2$. If $\alpha, \beta \in D_{n}$, then $\alpha \beta=\theta$ if and only if $\operatorname{Im}(\alpha) \subseteq 1 \beta^{-1}$. In particular, $\alpha^{2}=\theta$ if and only if $\operatorname{Im}(\alpha) \subseteq 1 \alpha^{-1}$.

Proof: Let $\alpha, \beta \in D_{n}$. If $\alpha \beta=\theta$, then we have $x(\alpha \beta)=(x \alpha) \beta=x \theta=1$ for all $x \in X_{n}$. So we have $y \beta=1$ for all $y \in \operatorname{Im}(\alpha)$. It follows that $\operatorname{Im}(\alpha) \subseteq 1 \beta^{-1}$. If $\operatorname{Im}(\alpha) \subseteq 1 \beta^{-1}$, then we have $x(\alpha \beta)=(x \alpha) \beta=1$ for all $x \in X_{n}$, it follows that $\alpha \beta=\theta$.

Lemma 2.2 For $n \geq 2$, let L be the set of left zerodivisors of D_{n} and R be the set of right zero-divisors of $\quad D_{n} . \quad$ Then, $\quad L=D_{n} \backslash\left\{1_{D_{n}}\right\}, \quad R=$ $\left\{\alpha \in D_{n}| | 1 \alpha^{-1} \mid \geq 2\right\}$. Moreover, $|L|=n!-1$ and $|R|=n!-(n-1)!$.

Proof: Let $n \geq 2$. Let L be the set of left zerodivisors of D_{n} and $\alpha \in D_{n} \backslash\left\{1_{D_{n}}\right\}$. Then we have $\operatorname{Im}(\alpha) \neq X_{n}$ from the definition of D_{n}. Let $\beta \in T_{n}$ such that $x \beta=1$ for all $x \in \operatorname{Im}(\alpha)$ and $y \beta=2$ for all $y \in X_{n} \backslash \operatorname{Im}(\alpha)$. Then we have $\beta \in D_{n}{ }^{*}$ and $\alpha \beta=$ θ. Thus, α is a left zero-divisor of D_{n}. If $\alpha=1_{D_{n}}$ and $\alpha \beta=\theta$ for any $\beta \in D_{n}$, then $\beta=\theta$ since $\operatorname{Im}(\alpha)=$ X_{n} and by Lemma2.1. Thus, $1_{D_{n}}$ is not a left zerodivisor of D_{n}. So $L=D_{n} \backslash\left\{1_{D_{n}}\right\}$ and it is clear that
$|L|=n!-1$. Let R be the set of right zero-divisors of D_{n} and $\alpha \in\left\{\alpha \in D_{n}| | 1 \alpha^{-1} \mid \geq 2\right\}$. Then we have $t \alpha=1$ for some $t \in X_{n} \backslash\{1\}$. Let $\beta \in T_{n}$ such that $x \beta=1$ for all $x<t$ and $x \beta=t$ for all $x \geq t$. So $\beta \in$ $D_{n}{ }^{*}$ and $\beta \alpha=\theta$. Thus, α is a right zero-divisor of D_{n}. If $\alpha \in D_{n}$ and $\alpha \notin\left\{\alpha \in D_{n}| | 1 \alpha^{-1} \mid \geq 2\right\}$, then we have $x \alpha \neq 1$ for all $x \geq 2$ and $1 \alpha^{-1}=\{1\}$. Let $\beta \alpha=\theta$ for any $\beta \in D_{n}$. Then we have $\operatorname{Im}(\beta)=\{1\}$ by Lemma 2.1 and so $\beta=\theta$. If $\alpha \in D_{n}$ and $\alpha \notin$ $\left\{\alpha \in D_{n}| | 1 \alpha^{-1} \mid \geq 2\right\}$, then α is not a right zerodivisor of D_{n}. So $R=\left\{\alpha \in D_{n}| | 1 \alpha^{-1} \mid \geq 2\right\}$. Let
$B=\left\{\alpha \in D_{n}| | 1 \alpha^{-1} \mid=1\right\}$
$=\left\{\alpha \in D_{n} \mid 1 \alpha^{-1}=\{1\}\right\}$.

It is clear that $|B|=(n-1)$!. Moreover, $R \cup B=$ D_{n} and $R \cap B=\varnothing$. So we have $|R|=\left|D_{n}\right|-|B|=$ $n!-(n-1)!$.

We have the following corollary since $T=L \cap R$ and $R \subseteq L$.

Corollary 2.3 For $n \geq 2$, let T be the set of (twosided) zero-divisors of D_{n}. Then $T=L \cap R=R$. So $|T|=n!-(n-1)!$.

3. Results and Discussions

Let $G=(V(G), E(G))$ be an undirected graph where $V(G)$ denotes the vertex set of G and $E(G)$ denotes the edge set of G. A graph whose edge set is empty set is called as a null graph. If G does not have any loops and multiple edges, then G is called a simple graph. We consider simple graphs for the following definitions. If $u, v \in V(G)$ and there is a path from u to v, then it is said u and v are connected vertices in G. If all vertices are connected in G, then G is called a connected graph, otherwise G is called a disconnected graph. A simple graph is called complete graph if every pair of distinct vertices is connected by an edge. The complete graph on n vertices is denoted by K_{n}. Now we give some examples about those definitons.

Figure 1. (Complete graph with 4 vertices) K_{4}.

Figure 2. Null graph with 6 vertices.

Figure 3. (Disconnected graph) G.
v_{1} and v_{2} are adjacent and connected vertices in G, v_{1} and v_{3} are not adjacent vertices but they are connected vertices since there is a path from v_{1} to v_{3}. There is not any path from v_{1} to v_{4}, so G is a disconnected graph.

Let $u, v \in V(G)$, the length of the shortest path between u and v is denoted by $d_{G}(u, v)$. The diameter of G is denoted by $\operatorname{diam}(G)$ and defined by
$\operatorname{diam}(G)=\max \left\{d_{G}(u, v) \mid u, v \in V(G)\right\}$.

The degree of a vertex $v \in V(G)$ is denoted by $\operatorname{deg}_{G}(v)$ and defined as the number of adjacent vertices to v in G. Among all the vertex degrees in G, the maximum degree in G is denoted by $\Delta(G)$ and the minimum degree in G is denoted by $\delta(G)$.

The length of the shortest cycle in G is called girth of G and it is denoted by $\operatorname{gr}(G)$. If G does not have any cycles, then its girth is defined to be infinity. Let C be the nonempty subset of $V(G)$. If u and v are adjacent vertices for all $u, v \in C$ in G, then C is called a clique. The number of vertices in any maximal clique in G is called clique number of G, it is denoted by $\omega(G)$. The chromatic number of G is defined by the number of the minimum number of colours required to colour all the vertices of G with the rule no two adjacent vertices have the same colour, and it is denoted by $\chi(G)$.

Let $I \subseteq V(G)$. If G^{\prime} be a subgraph of G which has vertex set I and edge set consists of all of the edges in $E(G)$ that have both endpoints in I, then G^{\prime} is called (vertex) induced subgraph of G.

In this section, we prove that $\Gamma\left(D_{n}\right)$ is a connected graph for $n \geq 4$. We find diameter, girth, the vertex degrees, the maximum degree, the minimum degree and we give lower bounds for clique number and choromatic number of $\Gamma\left(D_{n}\right)$ for $n \geq 4$. In this paper, we use Γ instead of $\Gamma\left(D_{n}\right)$. Let $T^{*}=T \backslash\{\theta\}$. Then we have $T^{*}=V(\Gamma)$ and
$\left|T^{*}\right|=[n!-(n-1)!]-1$.

Let $\alpha, \beta \in V(\Gamma) . \alpha$ and β are adjacent vertices if and only if $\operatorname{Im}(\alpha) \subseteq 1 \beta^{-1}$ and $\operatorname{Im}(\beta) \subseteq 1 \alpha^{-1}$ by Lemma 2.1.

Lemma 3.1 Γ is a connected graph for $n \geq 4$.

Proof: Let $n \geq 4$. Let $\bar{\alpha} \in T_{n}$ such that $x \bar{\alpha}=1$ for $1 \leq x \leq n-1$ and $n \bar{\alpha}=2$. So
$\bar{\alpha}=\left(\begin{array}{ccccc}1 & 2 & \ldots & n-1 & n \\ 1 & 1 & \ldots & 1 & 2\end{array}\right)$.

Then $\bar{\alpha} \in V(\Gamma)$. Let $\beta \in V(\Gamma) \backslash\{\bar{\alpha}\}$, we will show that there is a path from β to $\bar{\alpha}$ in Γ.

Case 1: If $\beta \in V(\Gamma) \backslash\{\bar{\alpha}\}$ such that $2 \beta=1$ and $n \beta \neq$ n, then $\bar{\alpha}$ and β are adjacent vertices in Γ by Lemma 2.1.

Case 2: Let $\beta \in V(\Gamma) \backslash\{\bar{\alpha}\}$ such that $2 \beta=2$ and $n \beta \neq n$. If there exists $t \in X_{n}$ such that $2<t<n$ and $t \beta=1$, then there exists $\gamma \in T_{n}$ such that $x \gamma=$ 1 for $1 \leq x \leq n-1$ and $n \gamma=t$. So $\gamma \in V(\Gamma)$ and there is a path in Γ such that $\beta-\gamma-\bar{\alpha}$ by Lemma 2.1. Othercase, we have $2 \beta=2, n \beta=1$ and $t \beta \neq$ 1 for $2 \leq t \leq n-1$ since $\left|1 \beta^{-1}\right| \geq 2$. There exists $\rho \in T_{n}$ such that $x \rho=1$ for $1 \leq x \leq n-1$ and $n \rho=n, \eta \in T_{n}$ such that $3 \eta=2$ and $x \eta=1$ for $x \in$ $X_{n} \backslash\{3\}$. Then there is a path in Γ such that $\beta-\rho-$ $\eta-\bar{\alpha}$ by Lemma 2.1.
Case 3: Let $\beta \in V(\Gamma) \backslash\{\bar{\alpha}\}$ such that $2 \beta=1$ and $n \beta=n$. Then there exists $k \in X_{n}$ such that $1<k<$ n and $k \notin \operatorname{Im}(\beta)$. Let $\lambda \in T_{n}$ such that $k \lambda=2$ and $x \lambda=1$ for all $x \in X_{n} \backslash\{k\}, \tau \in T_{n}$ such that $3 \tau=3$ and $x \tau=1$ for all $x \in X_{n} \backslash\{3\}$. Then we have $\lambda, \tau \in$ $V(\Gamma)$. If $k \neq 2$, then there is a path in Γ such that $\beta-\lambda-\bar{\alpha}$ by Lemma 2.1. If $k=2$, then there is a path in Γ such that $\beta-\lambda-\tau-\bar{\alpha}$ by Lemma 2.1.
Case 4: Let $\beta \in V(\Gamma) \backslash\{\bar{\alpha}\}$ such that $2 \beta=2$ and $n \beta=n$. Let $A=\left\{x \in X_{n} \backslash\{1\} \mid x \beta=1\right\}$ and $B=$ $\left\{x \in X_{n} \mid x \notin \operatorname{Im}(\beta)\right\}$. Then it is clear that $A \neq \emptyset$, $B \neq \emptyset, 2 \notin A$ and $n \notin B$. Let $k=\min A$ and $t=$ $\max B$. We have $k \neq n$ and $t \neq 2$. Moreover, we have $t \geq k$ from definition of D_{n}. Let $\mu \in T_{n}$ such that $t \mu=k$ and $x \mu=1$ for all $x \in X_{n} \backslash\{t\}$. Then $\mu \in$ $V(\Gamma)$ and there is a path in Γ such that $\beta-\mu-\bar{\alpha}$ by Lemma 2.1.
Thus, Γ is a connected graph for $n \geq 4$.

Lemma $3.2 \operatorname{diam}(\Gamma)=4$ for $n \geq 4$.
Proof: For $n \geq 4$, let $\alpha, \beta \in V(\Gamma)$ and α, β be different vertices. First of all, we will show that $d_{\Gamma}(\alpha, \beta) \leq 4$. If α and β are adjacent vertices in Γ, then $d_{\Gamma}(\alpha, \beta)=1$. Suppose that α and β are not adjacent vertices in Γ. Let
$A=\left\{x \in X_{n} \backslash\{1\} \mid x \alpha=1\right\}$,
$B=\left\{x \in X_{n} \mid x \notin \operatorname{Im}(\alpha)\right\}$,
$C=\left\{x \in X_{n} \backslash\{1\} \mid x \beta=1\right\}$,
$D=\left\{x \in X_{n} \mid x \notin \operatorname{Im}(\beta)\right\}$.

Let $k_{1}=\min A, t_{1}=\max B, k_{2}=\min C$ and $t_{2}=$ $\max D$. Let $\gamma \in T_{n}$ such that $t_{1} \gamma=k_{1}$ and $x \gamma=1$ for all $x \in X_{n} \backslash\left\{t_{1}\right\}$. Let $\rho \in T_{n}$ such that $t_{2} \rho=k_{2}$ and $x \rho=1$ for all $x \in X_{n} \backslash\left\{t_{2}\right\}$. We have $t_{1} \geq k_{1}, t_{2} \geq$ k_{2} and it is clear that $\gamma, \rho \in V(\Gamma)$. Moreover, α and γ are adjacent vertices in Γ, similarly β and ρ are adjacent vertices in Γ by Lemma 2.1. If $k_{1} \neq t_{2}$ and $k_{2} \neq t_{1}$ then γ and ρ are adjacent vertices in Γ by Lemma 2.1 and so $d_{\Gamma}(\alpha, \beta) \leq 3$. Let $k_{1}=t_{2}$. Then we have $k_{1} \geq k_{2}$ since $t_{2} \geq k_{2}$. If $t_{1}=k_{1}=k_{2}$, then $\rho=\gamma$ and so $d_{\Gamma}(\alpha, \beta) \leq 2$. If $t_{1}>k_{1}=k_{2}$, then there exists $r \in X_{n} \backslash\left\{1, t_{1}, k_{1}\right\}$ since $n \geq 4$. Let $\lambda \in T_{n}$ such that $r \lambda=r$ and $x \lambda=1$ for all $x \in$ $X_{n} \backslash\{r\}$. Then $\lambda \in V(\Gamma)$ and there is a path in Γ such that $\alpha-\gamma-\lambda-\rho-\beta$ by Lemma 2.1 and so $d_{\Gamma}(\alpha, \beta) \leq 4$. If $t_{1}=k_{1}>k_{2}$, then there exists $r \in$ $X_{n} \backslash\left\{1, k_{1}, k_{2}\right\}$ since $n \geq 4$. Let $\mu \in T_{n}$ such that $r \mu=r$ and $x \mu=1$ for all $x \in X_{n} \backslash\{r\}$. Then $\mu \in$ $V(\Gamma)$ and there is a path in Γ such that $\alpha-\gamma-\mu-$ $\rho-\beta$ by Lemma 2.1 and so $d_{\Gamma}(\alpha, \beta) \leq 4$. Let $t_{1}>$ $k_{1}>k_{2}$ and $\eta \in T_{n}$ such that $t_{1} \eta=k_{2}$ and $x \eta=1$ for all $x \in X_{n} \backslash\left\{t_{1}\right\}$. Then $\eta \in V(\Gamma)$ and there is a path in Γ such that $\alpha-\gamma-\eta-\rho-\beta$ by Lemma 2.1 and so $d_{\Gamma}(\alpha, \beta) \leq 4$. If $t_{1}=k_{2}$, then we have similar case. So if $\alpha, \beta \in V(\Gamma)$, then $d_{\Gamma}(\alpha, \beta) \leq 4$. Let $\alpha_{1} \in T_{n}$ such that $3 \alpha_{1}=1$ and $x \alpha_{1}=x$ for all $x \in X_{n} \backslash\{3\}, \quad \alpha_{2} \in T_{n}$ such that $1 \alpha_{2}=2 \alpha_{2}=1$, $3 \alpha_{2}=2$ and $x \alpha_{2}=x$ for all $x \geq 4$. Then $\alpha_{1}, \alpha_{2} \in$ $V(\Gamma)$. Moreover, α_{1} and α_{2} are different vertices and they are not adjacent vertices in $\Gamma . \alpha_{1}$ has only one adjacent vertex which is $\mu_{1} \in V(\Gamma), 3 \mu_{1}=3$ and $x \mu_{1}=1$ for all $x \in X_{n} \backslash\{3\}$, similarly α_{2} has only one adjacent vertex which is $\mu_{2} \in V(\Gamma), 3 \mu_{2}=2$ and $x \mu_{2}=1$ for all $x \in X_{n} \backslash\{3\}$. Furthermore, μ_{1} and μ_{2} are not adjacent vertices and so $d_{\Gamma}\left(\alpha_{1}, \alpha_{2}\right)=4$. Thus, $\operatorname{diam}(\Gamma)=4$ for $n \geq 4$.

Notice that if S is a commutative semigroup with zero, then $\Gamma(S)$ is a connected graph and $\operatorname{diam}(\Gamma(S)) \leq 3$ (Demeyer et al. 2002). However, these results may not be correct in noncommutative semigroups. So we have showed that $\Gamma\left(D_{n}\right)$ is a connected graph for $n \geq 4$. Moreover, we have proved that diam $\left(\Gamma\left(D_{n}\right)\right)=4$ for $n \geq 4$.

Lemma 3.3 $\operatorname{gr}(\Gamma)=3$ for $n \geq 4$.

Proof: It is clear that $\operatorname{gr}(\Gamma) \geq 3$ since Γ is a simple graph for $n \geq 4$. Let $n \geq 4$ and $\alpha, \beta, \gamma \in V(\Gamma)$ such that $2 \alpha=2, x \alpha=1$ for all $x \in X_{n} \backslash\{2\}, 3 \beta=3$, $y \beta=1$ for all $y \in X_{n} \backslash\{3\}, 4 \gamma=4, z \gamma=1$ for all $z \in X_{n} \backslash\{4\}$. Then there exists a cycle in Γ which is $\alpha-\beta-\gamma-\alpha$. So $\operatorname{gr}(\Gamma)=3$ for $n \geq 4$.

To find vertex degree of any vertex in Γ, we will define functions associate with vertices. Let $\alpha \in$ $V(\Gamma), \quad A=X_{n} \backslash \operatorname{Im}(\alpha)=\left\{a_{1}, a_{2}, \ldots, a_{k}\right\}, \quad 1 \alpha^{-1}=$ $\left\{1=b_{1}, b_{2}, \ldots, b_{r}\right\}$ with $1=b_{1}<b_{2}<\cdots<b_{r}$. If $a_{i} \in A$, then $a_{i} \geq b_{r}$ or there exists $j \in\{1,2, \ldots, n-$ $1\}$ and $b_{j} \leq a_{i}<b_{j+1}$. Let $f_{\alpha}: X_{n} \rightarrow X_{n}$ such that
$(x) f_{\alpha}=$
$\begin{cases}1, & \text { if } x \in \operatorname{Im}(\alpha) \\ j, & \text { if } x \notin \operatorname{Im}(\alpha) \text { and } b_{j} \leq x=a_{i}<b_{j+1} \\ r, & \text { if } x \notin \operatorname{Im}(\alpha) \text { and } x=a_{i} \geq b_{r} .\end{cases}$

Theorem 3.4 Let $n \geq 4$ and $\alpha \in V(\Gamma), A=X_{n} \backslash$ $\operatorname{Im}(\alpha)=\left\{a_{1}, a_{2}, \ldots, a_{k}\right\}, \quad 1 \alpha^{-1}=\{1=$ $\left.b_{1}, b_{2}, \ldots, b_{r}\right\}$ with $1=b_{1}<b_{2}<\cdots<b_{r}$. Then
$\operatorname{deg}_{\Gamma}(\alpha)= \begin{cases}\left(\prod_{i=1}^{n} i f_{\alpha}\right)-1, & \text { if } \operatorname{Im}(\alpha) \nsubseteq 1 \alpha^{-1} \\ \left(\prod_{i=1}^{n} i f_{\alpha}\right)-2, & \text { if } \operatorname{Im}(\alpha) \subseteq 1 \alpha^{-1} .\end{cases}$

Proof: Let $n \geq 4$ and $\alpha \in V(\Gamma), A=X_{n} \backslash \operatorname{Im}(\alpha)=$ $\left\{a_{1}, a_{2}, \ldots, a_{k}\right\}, \quad 1 \alpha^{-1}=\left\{1=b_{1}, b_{2}, \ldots, b_{r}\right\} \quad$ with $1=b_{1}<b_{2}<\cdots<b_{r}$. Let $\beta \in V(\Gamma), \alpha$ and β be the adjacent vertices in Γ. If $\operatorname{Im}(\alpha) \nsubseteq 1 \alpha^{-1}$, then $\alpha^{2} \neq \theta$ by Lemma 2.1. We have $x \beta=1$ for all $x \in$ $\operatorname{Im}(\alpha)$, thus $\left|1 \beta^{-1}\right| \geq 2$. If $x \notin \operatorname{Im}(\alpha)$, then $x \beta \in$ $1 \alpha^{-1}$ and $x \beta \leq x$. If $x \notin \operatorname{Im}(\alpha)$, then $x=a_{i}$ for $1 \leq$ $i \leq k$. So, it is clear that we have $\left(a_{i}\right) f_{\alpha}$ different choices for $x \beta$ where $x \notin \operatorname{Im}(\alpha)$. However, we have $\beta \in T$ with those choices. If we take $x \beta=1$ for all $x \notin \operatorname{Im}(\alpha)$, then $\beta=\theta$. So, if $\operatorname{Im}(\alpha) \nsubseteq 1 \alpha^{-1}$, then $\operatorname{deg}_{\Gamma}(\alpha)=\left(\prod_{i=1}^{n} i f_{\alpha}\right)-1$. If $\operatorname{Im}(\alpha) \subseteq 1 \alpha^{-1}$, then we have $\alpha^{2}=\theta$ by Lemma 2.1. Moreover, we have
similar proof for this case. So, if $\operatorname{Im}(\alpha) \subseteq 1 \alpha^{-1}$, then $d e g_{\Gamma}(\alpha)=\left(\prod_{i=1}^{n} i f_{\alpha}\right)-2$ since $\alpha^{2}=\theta$.

Let $\quad n \geq 4 \quad$ and $\quad \alpha \in V(\Gamma), \quad A=X_{n} \backslash \operatorname{Im}(\alpha)=$ $\left\{a_{1}, a_{2}, \ldots, a_{k}\right\}, \quad 1 \alpha^{-1}=\left\{1=b_{1}, b_{2}, \ldots, b_{r}\right\} \quad$ with $1=b_{1}<b_{2}<\cdots<b_{r}$. We have $|A| \leq n-2$ since $|\operatorname{Im}(\alpha)| \geq 2$, moreover we have $2 \leq r \leq n-1$ since $\alpha \in T^{*}$. So, $i f_{\alpha} \leq i$ for $1 \leq i \leq n-1$ and $n f_{\alpha} \leq n-1$ since $r \leq n-1$ and the definiton of f. It can be $i f_{\alpha} \neq 1$ at most $n-2$ different elements in X_{n} since $|\operatorname{Im}(\alpha)| \geq 2$. Thus, for the maximum degree we take $1 f_{\alpha}=1,2 f_{\alpha}=1, i f_{\alpha}=i$ for $3 \leq$ $i \leq n-1$ and $n f_{\alpha}=n-1$. In this case, we have
$\alpha=\left(\begin{array}{ccccc}1 & 2 & \ldots & n-1 & n \\ 1 & 1 & \ldots & 1 & 2\end{array}\right)$,
$\alpha^{2}=\theta$ and so $\operatorname{de} g_{\Gamma}(\alpha)=\left(\frac{(n-1)!}{2} .(n-1)\right)-2$.
Moreover, it is clear that

$$
\left(\frac{(n-1)!}{2} \cdot(n-1)\right)-2>\left(\frac{(n-1)!}{k} \cdot(n-1)\right)-1
$$

for $n \geq 4$ and $k \geq 3$. Thus, α is the unique vertex which has maximum degree in Γ. Let
$\beta=\left(\begin{array}{lllll}1 & 2 & \ldots & n-1 & n \\ 1 & 2 & \ldots & n-1 & 1\end{array}\right)$,
then $\operatorname{deg}_{\Gamma}(\beta)=1$. So we have the following corollary.

Corollary 3.5 If $n \geq 4$, then
$\Delta(\Gamma)=\left(\frac{(n-1)!}{2} \cdot(n-1)\right)-2$
and $\delta(\Gamma)=1$.

Theorem 3.6 For $n \geq 4, \omega(\Gamma) \geq r^{n-r}-1$ for $2 \leq$ $r \leq n-1$.

Proof: Let $n \geq 4$ and $X_{r}=\{1,2, \ldots, r\}$ for $2 \leq r \leq$ $n-1$. Let
$A=\left\{\alpha \in V(\Gamma) \mid 1 \alpha^{-1} \supseteq X_{r}\right.$ and $\left.\operatorname{Im}(\alpha) \subseteq X_{r}\right\}$.

If $\alpha \in A$, then we have $\operatorname{Im}(\alpha) \subseteq X_{r} \subseteq 1 \alpha^{-1}$. Let $\alpha, \beta \in A$ and $\alpha \neq \beta$. Then we have $\operatorname{Im}(\alpha) \subseteq X_{r} \subseteq$ $1 \beta^{-1}$ and $\operatorname{Im}(\beta) \subseteq X_{r} \subseteq 1 \alpha^{-1}$ and so α and β are adjacent vertices in Γ. If G be an induced subgraph of Γ induced by the vertex set A, then G is a complete graph. Moreover, it is clear that $|A|=$ $r^{n-r}-1$. Thus, we have $\omega(\Gamma) \geq r^{n-r}-1$ for $2 \leq$ $r \leq n-1$.

For any graph G, it is known that $\chi(G) \geq \omega(G)$ (Chartrand et al. 2009). So we have the following corollary.

Corollary 3.7 For $n \geq 4, \chi(\Gamma) \geq r^{n-r}-1$ for $2 \leq$ $r \leq n-1$.

Example 3.8 Let $\Gamma=\Gamma\left(D_{4}\right)$. Then Γ is a connected $\operatorname{graph}, V(\Gamma)=17, \operatorname{diam}(\Gamma)=4, \operatorname{gr}(\Gamma)=3, \Delta(\Gamma)=$ $7, \delta(\Gamma)=1, \omega(\Gamma) \geq 3$ and $\chi(\Gamma) \geq 3$. Moreover, Γ is isomorphic to following graph.

Figure 4. $\Gamma\left(D_{4}\right)$.

4. Conclusion

In this study, we find the set of left zero-divisors, right zero-divisors and two sided zero divisors of D_{n} for $n \geq 2$. It is well known that D_{n} is a noncommutative semigroup for $n \geq 3$. We define a
graph associated with D_{n} which is called zero-divisor graph of D_{n} and it is denoted by $\Gamma\left(D_{n}\right)$. One can see that $\Gamma\left(D_{2}\right)$ is a null graph and $\Gamma\left(D_{3}\right)$ is not a connected graph. We have introduced $\Gamma\left(D_{n}\right)$ for $n \geq 4$.

5. References

Anderson, D.F., Livingston, P.S., 1999. The zero-divisor graph of a commutative ring. Journal of Algebra, 217(2), 434-447.

Beck, I., 1988. Coloring of commutative rings. Journal of Algebra, 116(1), 208-226.

Chartrand, G., Zhang, P., 2009. Chromatic Graph Theory. Boca Raton, FL, USA: CRC Press, 1-483.

Das, K.C., Akgüneş, N., Çevik, A.S., 2013. On a graph of monogenic semigroup. Journal of Inequalities and Applications, 44, 1-13.

DeMeyer, F., DeMeyer, L., 2005. Zero divisor graphs of semigroups. Journal of Algebra, 283(1), 190-198.

DeMeyer, F., McKenzie, T., Schneider, K., 2002. The zerodivisor graph of a commutative semigroup. Semigroup Forum, 65(2), 206-214.

Howie, J.M., 1995.Fundamentals of semigroup theory. New York, NY, USA: Oxford University Press, 1-351.

Redmond S.P., 2002. The zero-divisor graph of a noncommutative ring. International Journal of Commutative Rings, 1(4), 203-211.

Thulasiraman, K., Arumugam, S., Brandstädt, A., Nishizeki, T., 2015. Handbook of Graph Theory, Combinatorial Optimization, and Algorithms. Boca Raton, CRC Press, 1-1195.

Toker, K., 2016. On the zero-divisor graphs of finite free semilattices. Turkish Journal of Mathematics, 40(4), 824-831.

Toker, K., 2021. Zero-divisor graphs of Catalan monoid. Hacettepe Journal of Mathematics and Statistics, 50(2), 387-396.

Toker, K., 2021. Zero-divisor graphs of partial transformation semigroups. Turkish Journal of Mathematics, 45(5), 2323-2330.

Umar, A., 1992. On the semigroup of order-decreasing full transformation. Proceedings of the Royal Society of Edinburgh Section A: Mathematics, 120(A), 129142.

