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Öz 

In this paper, we introduce a new method for obtaining nullnorms on 𝑀 having an annihilator based on 
the existence of triangular norms and nullnorms acting on a subinterval of a bounded lattice 𝑀. Some 
basic properties concerning this construction method are investigated. Furthermore, it is exemplified 
the fact that the proposed method differs from the existing methods for constructing nullnorms on 
bounded lattices. 

 

Kafesler Üzerinde Nullnormların Bir Farklı Ailesinin İnşaası 
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Abstract 

Bu çalışmada sınırlı bir 𝑀 kafesinin bir alt aralığı üzerinde hareket eden nullnormlar ve üçgensel normlar 

temel alınarak 𝑀 üzerinde bir yutan elemanlı nullnormları elde etmek için yeni bir inşaa yöntemi 

önerilmektedir. Bu inşaa yöntemi ile ilgili bazı temel özellikler araştırılmaktadır. Ayrıca, önerilen 

yöntemin sınırlı kafesler üzerinde nullnormları inşa eden mevcut yöntemlerden farklı olduğu örnekle 

gösterilmektedir. 

© Afyon Kocatepe Üniversitesi 

 

1. Introduction  

The definitions of nullnorms and t-operators first 

appeared in (Calvo et al. 2001, Mas et al. 1999), 

respectively. Both of these operators are special 

aggregation operators, that are demonstrated 

beneficial in numerous areas like aggregation, 

expert systems, neural networks, multicriteria 

decision support, fuzzy logic and fuzzy system 

modeling (Calvo et al. 2001, Dubois and Prade 2000, 

Klement et al. 2000, Takács 2008).  In particular, 

these operators are used in fuzzy logic as 

aggregation operators “or” and maintain several 

logical characteristics. Nullnorms as generalizations 

of the notions of triangular norms and triangular 

conorms, admit an annihilator to be any element 

from unit interval. Furthermore, the fact that t-

operators and nullnorms are equivalent in (Mas et 

al. 2002) were proved. That is, whenever a mapping 

is a t-operator, it is a nullnorm and on the other 

hand, once a mapping is nullnorm, it is a t-operator. 

There are several approaches dealing with 

nullnorms on the real unit interval in the papers 

(Drygaś, 2004a, Drygaś et al. 2017, Grabisch 2009, 

Sun et al. 2017). 

Nullnorms on general bounded lattices were studied 

in (Karaçal et al. 2015). It was showed the fact that 

a nullnorm defined on a general bounded lattice 

having an annihilator with underlying triangular 

norms and triangular conorms always exists. 

Moreover, some construction methods for such 

               Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi 
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nullnorms were introduced. By means of these 

methods, the greatest and the smallest nullnorms 

on general bounded lattices were obtained. In 

(Ertuğrul 2018), elaborating the mappings 

introduced previously by (Karaçal et al. 2015) and 

enhancing them, further methods for generating 

nullnorms defined on general bounded lattices were 

described. 

    In this study, we present a new method to 

generate nullnorms defined on a bounded lattice 𝑀 

having the fixed annihilator via the existence of a 

triangular norm and a nullnorm on a subinterval of 

𝑀. In addition, some main characteristics of the 

proposed methods are researched. The paper 

includes three parts. In Section 2, some main results 

about nullnorms defined on bounded lattices are 

given. In Section 3, it is described a method for 

generating nullnorms defined on a bounded lattice 

different from previously proposed methods. It is 

also demonstrated the fact that our method differs 

from the existing methods. Some illustrative 

examples are provided in order to show the 

feasibility of our construction method.  

2. Preliminaries  

    In this part, some main results dealing with 

bounded lattices and nullnorms (triangular norms, 

triangular conorms) defining on them are given. 

Definition 1 (Birkhoff 1967). A partially ordered set 

(𝑃,≤) is called lattice if any two elements 𝑎, 𝑏 in 𝑃 

have the greatest lower bound denoted by inf{𝑎, 𝑏} 

or 𝑎 ∧  𝑏 and the least upper bound denoted by 

sup{𝑎, 𝑏} or 𝑎 ∨  𝑏. 

A lattice (𝑀,≤) is bounded whenever 𝑀 has the 

bottom element represented as 0𝑀 and top 

element represented as 1𝑀 (i.e. there are two 

elements 1𝑀, 0𝑀 ∈ 𝑀 such that for all 𝑎 ∈ 𝑀, 0𝑀 ≤

𝑎 ≤ 1𝑀). 

Throughout this paper, 𝑀 always represents any 

given general bounded lattice with the top element 

1𝑀 and bottom element 0𝑀 unless otherwise 

stated. 

Definition 2 (Birkhoff 1967). Let 𝑝, 𝑞 ∈ 𝑀. In that 

case 𝑝 and 𝑞 are incomparable, it is used the 

notation 𝑓 ∥ 𝑓. 

    The set of elements the fact that are 

incomparable with 𝑠 ∈ 𝑀 is denoted by 𝐼𝑠. So, 𝐼𝑠 =

{𝑝 ∈ 𝑀 | 𝑝 ∥ 𝑠}. 

Definition 3 (Birkhoff 1967). Let 𝑝, 𝑞 ∈ 𝑀 and 𝑓 ≤

𝑓. Then it is defined a subinterval [𝑝, 𝑞] in 𝑀 as 

below: 

 [𝑝, 𝑞] = {𝑥 ∈ 𝑀 | 𝑝 ≤ 𝑥 ≤ 𝑞}. 

Similarly, it can be defined the other subintervals in 

𝑀 as follow 

]𝑝, 𝑞] = {𝑥 ∈ 𝑀 | 𝑝 < 𝑥 ≤ 𝑞},  

[𝑝, 𝑞[= {𝑥 ∈ 𝑀 | 𝑝 ≤ 𝑥 < 𝑞}  

and 

 ]𝑝, 𝑞[= {𝑥 ∈ 𝑀 | 𝑝 < 𝑥 < 𝑞}. 

Definition 4 (Çaylı and Karaçal 2018a and Karaçal  et 

al. 2015). If a mappping 𝑅:𝑀² → 𝑀 is associative, 

commutative monotone and there is an element 𝑠 ∈

𝑀 such that 𝑅(𝑎, 0𝑀) = 𝑎 for all 𝑎 ≤ 𝑠 and 

𝑅(𝑎, 1𝑀) = 𝑎 for all 𝑎 ≥ 𝑠 then it is called a 

nullnorm on 𝑀. 

    It is obvious the fact that for all 𝑎 ∈ 𝑀, 𝑅(𝑎, 𝑠) =

𝑠. So, 𝑠 ∈ 𝑀 is an annhilator, i.e., absorbing element 

or zero element of 𝑅. 

Definition 5 (Çaylı et al. 2016, Çaylı 2018). If a 

mapping 𝑇: 𝑀² → 𝑀 having an annihilator 0 is 

associative, commutative, monotone, then it is 

called a triangular norm on 𝑀. 

Definition 6 (Çaylı et al. 2016, Çaylı 2018). If a 

mapping 𝑆: 𝑀² → 𝑀 having an annihilator 1𝑀 is 

associative, commutative, monotone, then it is 

called a triangular norm on 𝑀. 

Example 1. The least triangular norm 𝑇∧: 𝑀² → 𝑀 

and the greatest triangular norm 𝑇𝑊: 𝑀² → 𝑀, 

respectively, are defined as: 

𝑇𝑊(𝑎, 𝑏) = {

𝑏 if 𝑎 = 1𝑀 ,
𝑎 if 𝑏 = 1𝑀,
0𝑀 otherwise.

 

𝑇∧(𝑎, 𝑏) = inf{𝑎, 𝑏} 
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The least triangular conorm 𝑆∨: 𝑀² → 𝑀 and the 

greatest triangular conorm 𝑆𝑊: 𝑀² → 𝑀, 

respectively, are defined as: 

𝑆∨(𝑎, 𝑏) = sup{𝑎, 𝑏} 

𝑆𝑊(𝑎, 𝑏) = {

𝑏 if 𝑎 = 0𝑀 ,
𝑎 if 𝑏 = 0𝑀 ,
1𝑀 otherwise.

 

    The following set is denoted by 𝐷𝑠: 

𝐷𝑠 = [0𝑀 , 𝑠] × [𝑠, 1𝑀] ∪ [𝑠, 1𝑀] × [0𝑀, 𝑠]  

for 𝑠 ∈ 𝑀\{0𝑀, 1𝑀}. 

Proposition 1 (Drygaś 2004b, Çaylı and Karaçal 

2018b, Karaçal et al. 2016). Consider the fact that 

𝑠 ∈ 𝑀 and 𝑠 ≠ 0𝑀 , 1𝑀, and a nullnorm 𝑅 having the 

annihilator 𝑠. The following statements hold: 

(i) 𝑅 ↾ [0𝑀 , 𝑠]²: [0𝑀 , 𝑠]² → [0𝑀 , 𝑠] is a triangular 

conorm on the subinterval [0𝑀 , 𝑠]. 

(ii) 𝑅 ↾ [𝑠, 1𝑀]²: [𝑠, 1𝑀]² → [𝑠, 1𝑀] is a triangular 

norm on the subinterval [𝑠, 1𝑀]. 

Proposition 2 (Drygaś 2004b, Karaçal et al. 2015). 

Consider the fact that 𝑠 ∈ 𝑀 and 𝑠 ≠ 0𝑀 , 1𝑀, and a 

nullnorm 𝑅 having the annihilator 𝑠. The following 

statements hold: 

 (i) 𝑅(𝑎, 𝑏) = 𝑠 for (𝑎, 𝑏) ∈ 𝐷𝑠. 

(ii) 𝑠 ≤  𝑅(𝑎, 𝑏) for (𝑎, 𝑏) ∈ [𝑠, 1𝑀]² ∪ [𝑠, 1𝑀] ×

𝐼𝑠 ∪ 𝐼𝑠 × [𝑠, 1𝑀]. 

(iii) 𝑅(𝑎, 𝑏) ≤ 𝑠 for (𝑎, 𝑏) ∈ [0𝑀 , 𝑠]² ∪ [0𝑀 , 𝑠] ×

𝐼𝑠 ∪ 𝐼𝑠 × [0𝑀 , 𝑠]. 

(iv) 𝑅(𝑎, 𝑏) ≤ 𝑏 for (𝑎, 𝑏) ∈ 𝑀 × [𝑠, 1𝑀]. 

(v) 𝑅(𝑎, 𝑏) ≤ 𝑎 for (𝑎, 𝑏) ∈ [𝑠, 1𝑀] × 𝑀. 

(vi) 𝑎 ≤ 𝑅(𝑎, 𝑏) for (𝑎, 𝑏) ∈ [0𝑀 , 𝑠] × 𝑀. 

(vii) 𝑏 ≤ 𝑅(𝑎, 𝑏) for (𝑎, 𝑏) ∈ 𝑀 × [0𝑀 , 𝑠]. 

(viii) sup{𝑎, 𝑏} ≤ 𝑅(𝑎, 𝑏) for (𝑎, 𝑏) ∈ [0𝑀 , 𝑠]². 

(ix) 𝑅(𝑎, 𝑏) ≤ inf{𝑎, 𝑏} for (𝑎, 𝑏) ∈ [𝑠, 1𝑀]². 

(x) sup{inf{𝑎, 𝑠}, inf{𝑏, 𝑠}} ≤ 𝑅(𝑎, 𝑏)  

for (𝑎, 𝑏) ∈ [0𝑀 , 𝑠] × 𝐼𝑠 ∪ 𝐼𝑠 × [0𝑀 , 𝑠] ∪ 𝐼𝑠 × 𝐼𝑠. 

(xi) 𝑅(𝑎, 𝑏) ≤  inf{sup{𝑎, 𝑠}, sup{𝑏, 𝑠}}  

for (𝑎, 𝑏) ∈ [𝑠, 1𝑀] × 𝐼𝑠 ∪ 𝐼𝑠 × [𝑠, 1𝑀] ∪ 𝐼𝑠 × 𝐼𝑠. 

 

2. Construction methods for nullnorms 

    After the demonstration of the presence of 

nullnorms defined on 𝑀, the constructions for 

nullnorms on 𝑀 have recently attracted much 

attention. In the literature, there are some 

construction methods for generating nullnorms 

defined on 𝑀. In (Karaçal et al. 2015, Ertuğrul 2018), 

it was presented three methods for obtaining 

nullnorms on 𝑀 having the fixed annihilator 𝑠 ∈ 𝑀 

the fact that 𝑠 ≠ 0𝑀 , 1𝑀 based on the presence of 

triangular norms on [𝑠, 1𝑀] and triangular conorms 

on [0𝑀 , 𝑠]. 

    These construction methods in Theorem 1 and 

Theorem 2 are recalled.  

Theorem 1 (Karaçal et al. 2015). Consider the fact 

that 𝑠 ∈ 𝑀 and 𝑠 ≠ 0𝑀 , 1𝑀, a triangular conorm 𝑆 

acting on [0𝑀 , 𝑠] and a triangular norm 𝑇 acting on 

[𝑠, 1𝑀]. in the present case, the mapping 

𝑅(𝑇,𝑆):𝑀2 → 𝑀 is a nullnorm on 𝑀 having the 

annihilator 𝑠, where 

 

𝑅(𝑇,𝑆)(𝑎, 𝑏)

= {
𝑆(𝑎, 𝑏) if (𝑎, 𝑏) ∈ [0𝑀 , 𝑠]

2,

𝑇(𝑎, 𝑏) if (𝑎, 𝑏) ∈ [𝑠, 1𝑀]
2,

𝑠 otherwise.

 
 

Theorem 2 (Ertuğrul 2018). Consider the fact that 

𝑠 ∈ 𝑀 and 𝑠 ≠ 0𝑀 , 1𝑀, a triangular conorm 𝑆 acting 

on [0𝑀 , 𝑠] and a triangular norm 𝑇 acting on [𝑠, 1𝑀]. 

In this case the mappings 𝑅𝑇
𝑆 , 𝑅𝑆

𝑇:𝑀2 → 𝑀 are 

nullnorms on 𝑀 having the annihilator 𝑠, where  

𝑅𝑇
𝑆(𝑎, 𝑏)

=

{
 
 

 
 
𝑆(𝑎, 𝑏) if (𝑎, 𝑏) ∈ [0𝑀 , 𝑠]

2,

𝑇(𝑎, 𝑏) if (𝑎, 𝑏) ∈ [𝑠, 1𝑀]
2,

𝑆(inf{𝑎, 𝑠}, inf{𝑏, 𝑠})
if (𝑎, 𝑏) ∈ [0𝑀 , 𝑠] × 𝐼𝑠
∪ 𝐼𝑠 × [0𝑀 , 𝑠] ∪ 𝐼𝑠 × 𝐼𝑠,

𝑠 otherwise.

 

and 
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𝑅𝑆
𝑇(𝑎, 𝑏)

=

{
 
 

 
 
𝑆(𝑎, 𝑏) if (𝑎, 𝑏) ∈ [0𝑀 , 𝑠]

2,

𝑇(𝑎, 𝑏) if (𝑎, 𝑏) ∈ [𝑠, 1𝑀]
2,

𝑇(sup{𝑎, 𝑠}, sup{𝑏, 𝑠})
if (𝑎, 𝑏) ∈ [𝑠, 1𝑀] × 𝐼𝑠
∪ 𝐼𝑠 × [𝑠, 1𝑀] ∪ 𝐼𝑠 × 𝐼𝑠,

𝑠 otherwise.

 

Corollary 1 (Karaçal et al. 2015). Consider the fact 

that 𝑠 ∈ 𝑀 and 𝑠 ≠ 0𝑀 , 1𝑀, a triangular conorm 𝑆 

acting on [0𝑀 , 𝑠] and a triangular norm 𝑇 acting on 

[𝑠, 1𝑀]. In the present case, the mappings 

𝑅(∨), 𝑅(∧):𝑀2 →𝑀 are the greatest nullnorm and 

the least nullnorm on 𝑀 having the annihilator 𝑠, 

respectively, where  

𝑅(∨)(𝑎, 𝑏)

=

{
  
 

  
 
sup{𝑎, 𝑏} if (𝑎, 𝑏) ∈ [0𝑀 , 𝑠]

2,

𝑠
if (𝑎, 𝑏) ∈ [𝑠, 1𝑀[

2∪ [𝑠, 1𝑀] × 𝐼𝑠
∪ 𝐼𝑠 × [𝑠, 1𝑀] ∪ 𝐷𝑠,

sup{inf{𝑎, 𝑠}, inf{𝑏, 𝑠}}
if (𝑎, 𝑏) ∈ [0𝑀 , 𝑠] × 𝐼𝑠
∪ 𝐼𝑠 × [0𝑀 , 𝑠] ∪ 𝐼𝑠 × 𝐼𝑠,

inf{𝑎, 𝑏} otherwise.

 

and 

𝑅(∧)(𝑎, 𝑏)

=

{
  
 

  
 
inf{𝑎, 𝑏} if (𝑎, 𝑏) ∈ [𝑠, 1𝑀]

2,

𝑠
if (𝑎, 𝑏) ∈ [0𝑀 , 𝑠[× 𝐼𝑠
∪ 𝐼𝑠 × [0𝑀 , 𝑠] ∪ 𝐷𝑠,

inf{sup{𝑎, 𝑠}, sup{𝑏, 𝑠}}
if (𝑎, 𝑏) ∈ [𝑠, 1𝑀] × 𝐼𝑠
∪ 𝐼𝑠 × [𝑠, 1𝑀] ∪ 𝐼𝑠 × 𝐼𝑠,

sup{𝑎, 𝑏} otherwise.

 

Corollary 2. Consider the fact that 𝑠 ∈ 𝑀 and 𝑠 ≠

0𝑀 , 1𝑀, a triangular conorm 𝑆 on acting [0𝑀 , 𝑠] and 

a triangular norm 𝑇 acting on [𝑠, 1𝑀]. In Theorem 2, 

the nullnorms 𝑅𝑇
𝑆 , 𝑅𝑆

𝑇:𝑀2 → 𝑀 can also be given by 

𝑅𝑇
𝑆(𝑎, 𝑏)

= {

𝑆(𝑎, 𝑏) if (𝑎, 𝑏) ∈ [0𝑀 , 𝑠]
2,

𝑇(𝑎, 𝑏) if (𝑎, 𝑏) ∈ [𝑠, 1𝑀]
2,

𝑆(inf{𝑎, 𝑠}, inf{𝑏, 𝑠}) otherwise.

 

and 

𝑅𝑆
𝑇(𝑎, 𝑏)

= {

𝑇(𝑎, 𝑏) if (𝑎, 𝑏) ∈ [𝑠, 1𝑀]
2,

𝑆(𝑎, 𝑏) if (𝑎, 𝑏) ∈ [0𝑀 , 𝑠]
2,

𝑇(sup{𝑎, 𝑠}, sup{𝑏, 𝑠}) otherwise.

 

In order to enhance the methods proposed in 

(Karaçal et al. 2015, Ertuğrul 2018), it is introduced 

a new construction method for nullnorms on 𝑀 

having the annihilator 𝑠 ∈ 𝑀 such that 𝑠 ≠ 0𝑀, 1𝑀 

different from the proposal in (Karaçal et al. 2015, 

Ertuğrul 2018). Our methods base on the presence 

of a nullnorm acting on a subinterval [0𝑀, 𝑓] of 𝑀 

and a triangular norm on [𝑓, 1𝑀] for any element 

𝑓 ∈ 𝑀\{0𝑀 , 1𝑀}. In addition, our construction 

method differs from the methods presented by 

(Karaçal et al. 2015, Ertuğrul 2018) and they are 

described in Theorem 1 and Theorem 2.  

Theorem 3.  Consider the fact that 𝑠, 𝑓 ∈ 𝑀 and 

𝑠, 𝑓 ≠ 0𝑀 , 1𝑀 and 𝑠 ∈]0𝑀 , 𝑓]. If 𝑅𝑓 is a nullnorm on  

[0𝑀 , 𝑓] having the annihilator 𝑠 and 𝑇𝑓 is a triangular 

norm acting on [𝑓, 1𝑀], in this case the following 

mapping 𝑅𝑐:𝑀
2 → 𝑀 is a nullnorm on 𝑀 having the 

annihilator 𝑠.  

𝑅𝑐(𝑝, 𝑞) 

= {

𝑅𝑓(𝑝, 𝑞) if (𝑝, 𝑞) ∈ [0𝑀 , 𝑓]
2,

𝑇𝑓(𝑝, 𝑞) if (𝑝, 𝑞) ∈ [𝑓, 1𝑀]
2,

𝑅𝑓(inf{𝑝, 𝑓}, inf{𝑞, 𝑓}) otherwise.

           

Proof. i) Monotonicity: It is proved the fact that if 

𝑝 ≤ 𝑞 in this case, 𝑅𝑐(𝑝, 𝑧) ≤ 𝑅𝑐(𝑞, 𝑧) for all 𝑧 ∈ 𝑀. 

It is proved considering all possible cases.  

1. Let 𝑝 ∈ [0𝑀 , 𝑓].  In the present case, 

 If 𝑞 ∈ [0𝑀 , 𝑓], then 

 If 𝑧 ∈ [0𝑀 , 𝑓], then 

𝑅𝑐(𝑝, 𝑧) = 𝑅𝑓(𝑝, 𝑧) ≤ 𝑅𝑓(𝑞, 𝑧) = 𝑅𝑐(𝑞, 𝑧) 

 If 𝑧 ∈ ]𝑓, 1𝑀], then 

𝑅𝑐(𝑝, 𝑧) = 𝑅𝑓(𝑝, 𝑓) ≤ 𝑅𝑓(𝑞, 𝑓) = 𝑅𝑐(𝑞, 𝑧) 

 If 𝑧 ∈ 𝐼𝑓, then 

𝑅𝑐(𝑝, 𝑧) = 𝑅𝑓(𝑝, inf{𝑧, 𝑓}) 

≤ 𝑅𝑓(𝑞, inf{𝑧, 𝑓}) 

= 𝑅𝑐(𝑞, 𝑧)  

 If 𝑞 ∈ ]𝑓, 1𝑀], then 

 If 𝑧 ∈ [0𝑀 , 𝑓], then 

𝑅𝑐(𝑝, 𝑧) = 𝑅𝑓(𝑝, 𝑧) ≤ 𝑅𝑓(𝑓, 𝑧) = 𝑅𝑐(𝑞, 𝑧) 

 If 𝑧 ∈ ]𝑓, 1𝑀], then 

𝑅𝑐(𝑝, 𝑧) = 𝑅𝑓(𝑝, 𝑓) ≤ 𝑓 ≤ 𝑇𝑓(𝑞, 𝑧) = 𝑅𝑐(𝑞, 𝑧) 

 If 𝑧 ∈ 𝐼𝑓, then 

𝑅𝑐(𝑝, 𝑧) = 𝑅𝑓(𝑝, inf{𝑧, 𝑓}) 

              ≤ 𝑅𝑓(𝑓, inf{𝑧, 𝑓}) 

              = 𝑅𝑐(𝑞, 𝑧) 

 If 𝑞 ∈ 𝐼𝑓,  

 If 𝑧 ∈ [0𝑀 , 𝑓], then 
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𝑅𝑐(𝑝, 𝑧) = 𝑅𝑓(𝑝, 𝑧) ≤ 𝑅𝑓(inf{𝑞, 𝑓}, 𝑧) = 𝑅𝑐(𝑞, 𝑧)     

 If 𝑧 ∈ ]𝑓, 1𝑀], then 

𝑅𝑐(𝑝, 𝑧) = 𝑅𝑓(𝑝, 𝑓) 

              ≤ 𝑅𝑓(inf{𝑞, 𝑓}, 𝑓) 

              = 𝑅𝑐(𝑞, 𝑧) 

 If 𝑧 ∈ 𝐼𝑓, then 

𝑅𝑐(𝑝, 𝑧) = 𝑅𝑓(𝑝, inf{𝑧, 𝑓}) 

              ≤ 𝑅𝑓(inf{𝑞, 𝑓}, inf{𝑧, 𝑓})      

              = 𝑅𝑐(𝑞, 𝑧) 

2. Let 𝑝 ∈ ]𝑓, 1𝑀]. In the present case, 𝑞 ∈ ]𝑓, 1𝑀].  

 If 𝑧 ∈ [0𝑀 , 𝑓],  then 

𝑅𝑐(𝑝, 𝑧) = 𝑅𝑓(𝑓, 𝑧) = 𝑅𝑐(𝑞, 𝑧) 

 If 𝑧 ∈ ]𝑓, 1𝑀], then 

𝑅𝑐(𝑝, 𝑧) = 𝑇𝑓(𝑝, 𝑧) ≤ 𝑇𝑓(𝑞, 𝑧) = 𝑅𝑐(𝑞, 𝑧) 

 If 𝑧 ∈ 𝐼𝑓 , then 

𝑅𝑐(𝑝, 𝑧) = 𝑅𝑓(𝑓, inf{𝑧, 𝑓}) = 𝑅𝑐(𝑞, 𝑧) 

3. Let 𝑝 ∈ 𝐼𝑓. In the present case, 

 If 𝑞 ∈ ]𝑓, 1𝑀], then 

 If 𝑧 ∈ [0𝑀 , 𝑓], then 

𝑅𝑐(𝑝, 𝑧) = 𝑅𝑓(inf{𝑝, 𝑓}, 𝑧) ≤ 𝑅𝑓(𝑓, 𝑧) = 𝑅𝑐(𝑞, 𝑧) 

 If 𝑧 ∈ ]𝑓, 1𝑀], 

𝑅𝑐(𝑝, 𝑧) = 𝑅𝑓(inf{𝑝, 𝑓}, 𝑓) ≤ 𝑇𝑓(𝑞, 𝑧) = 𝑅𝑐(𝑞, 𝑧)              

 If 𝑧 ∈ 𝐼𝑓 , then 

𝑅𝑐(𝑝, 𝑧) = 𝑅𝑓(inf{𝑝, 𝑓}, inf{𝑧, 𝑓}) 

                ≤ 𝑅𝑓(𝑓, inf{𝑧, 𝑓}) 

                = 𝑅𝑐(𝑞, 𝑧) 

 If 𝑞 ∈ 𝐼𝑓, then 

 If 𝑧 ∈ [0𝑀 , 𝑓], then 

𝑅𝑐(𝑝, 𝑧) = 𝑅𝑓(inf{𝑝, 𝑓}, 𝑧) 

                 ≤ 𝑅𝑓(inf{𝑞, 𝑓}, 𝑧) 

                  = 𝑅𝑐(𝑞, 𝑧) 

 If 𝑧 ∈ ]𝑓, 1𝑀], then 

𝑅𝑐(𝑝, 𝑧) = 𝑅𝑓(inf{𝑝, 𝑓}, 𝑓) 

              ≤ 𝑅𝑓(inf{𝑞, 𝑓}, 𝑓) 

               = 𝑅𝑐(𝑞, 𝑧) 

 If 𝑧 ∈ 𝐼𝑓 , then 

𝑅𝑐(𝑝, 𝑧) = 𝑅𝑓(inf{𝑝, 𝑓}, inf{𝑧, 𝑓}) 

              ≤ 𝑅𝑓(inf{𝑞, 𝑓}, inf{𝑧, 𝑓}) 

              = 𝑅𝑐(𝑞, 𝑧)  

ii) Associativity: It is proved the fact that for all 

𝑝, 𝑞, 𝑧 ∈ 𝑀, 𝑅𝑐(𝑝, 𝑅𝑐(𝑞, 𝑧)) = 𝑅𝑐(𝑅𝑐(𝑝, 𝑞), 𝑧).  

Again it is proved considering all possible cases.  

1. Let 𝑝 ∈ [0𝑀 , 𝑓].  In the present case, 

 If 𝑞 ∈ [0𝑀 , 𝑓], then 

 If 𝑧 ∈ [0𝑀 , 𝑓], then 

𝑅𝑐(𝑝, 𝑅𝑐(𝑞, 𝑧)) = 𝑅𝑐(𝑝, 𝑅𝑓(𝑞, 𝑧)) 

= 𝑅𝑓 (𝑝, 𝑅𝑓(𝑞, 𝑧)) 

= 𝑅𝑓(𝑅𝑓(𝑝, 𝑞), 𝑧) 

= 𝑅𝑐(𝑅𝑓(𝑝, 𝑞), 𝑧) 

= 𝑅𝑐(𝑅𝑐(𝑝, 𝑞), 𝑧) 

 If 𝑧 ∈ ]𝑓, 1𝑀], then 

𝑅𝑐(𝑝, 𝑅𝑐(𝑞, 𝑧)) = 𝑅𝑐(𝑝, 𝑅𝑓(𝑞, 𝑓)) 

= 𝑅𝑓(𝑝, 𝑅𝑓(𝑞, 𝑓)) 

= 𝑅𝑓(𝑅𝑓(𝑝, 𝑞), 𝑓) 

= 𝑅𝑐(𝑅𝑓(𝑝, 𝑞), 𝑧) 

= 𝑅𝑐(𝑅𝑐(𝑝, 𝑞), 𝑧) 

 If 𝑧 ∈ 𝐼𝑓, then 

𝑅𝑐(𝑝, 𝑅𝑐(𝑞, 𝑧)) = 𝑅𝑐(𝑝, 𝑅𝑓(𝑞, inf{𝑧, 𝑓})) 

= 𝑅𝑓(𝑝, 𝑅𝑓(𝑞, inf{𝑧, 𝑓})) 

= 𝑅𝑓(𝑅𝑓(𝑝, 𝑞), inf{𝑧, 𝑓}) 

= 𝑅𝑐(𝑅𝑓(𝑝, 𝑞), 𝑧) 

= 𝑅𝑐(𝑅𝑐(𝑝, 𝑞), 𝑧) 

 If 𝑞 ∈ ]𝑓, 1𝑀], then 

 If 𝑧 ∈ [0𝑀 , 𝑓], then 

𝑅𝑐(𝑝, 𝑅𝑐(𝑞, 𝑧)) = 𝑅𝑐(𝑝, 𝑅𝑓(𝑓, 𝑧)) 

= 𝑅𝑓(𝑝, 𝑅𝑓(𝑓, 𝑧)) 

= 𝑅𝑓(𝑅𝑓(𝑝, 𝑓), 𝑧) 

= 𝑅𝑐(𝑅𝑓(𝑝, 𝑓), 𝑧) 

= 𝑅𝑐(𝑅𝑐(𝑝, 𝑞), 𝑧) 

 If 𝑧 ∈ ]𝑓, 1], then 

𝑅𝑐(𝑝, 𝑅𝑐(𝑞, 𝑧)) = 𝑅𝑐(𝑝, 𝑇𝑓(𝑞, 𝑧)) 

= 𝑅𝑓(𝑝, 𝑓) 

= 𝑅𝑓(𝑅𝑓(𝑝, 𝑓), 𝑓) 

= 𝑅𝑐(𝑅𝑓(𝑝, 𝑓), 𝑧) 

= 𝑅𝑐(𝑅𝑐(𝑝, 𝑞), 𝑧) 

 If 𝑧 ∈ 𝐼𝑓 , then 

𝑅𝑐(𝑝, 𝑅𝑐(𝑞, 𝑧)) = 𝑅𝑐(𝑝, 𝑅𝑓(𝑓, inf{𝑧, 𝑓})) 

= 𝑅𝑓(𝑝, 𝑅𝑓(𝑓, inf{𝑧, 𝑓})) 

= 𝑅𝑓(𝑅𝑓(𝑝, 𝑓), inf{𝑧, 𝑓}) 

= 𝑅𝑓(𝑅𝑓(𝑝, 𝑓), 𝑓) 

= 𝑅𝑐(𝑅𝑐(𝑝, 𝑞), 𝑧) 

 If 𝑞 ∈ 𝐼𝑓, then  

 If 𝑧 ∈ [0𝑀 , 𝑓], 

𝑅𝑐(𝑝, 𝑅𝑐(𝑞, 𝑧)) = 𝑅𝑐(𝑝, 𝑅𝑓(inf{𝑞, 𝑓}, 𝑧)) 

= 𝑅𝑓(𝑝, 𝑅𝑓(inf{𝑞, 𝑓}, 𝑧)) 

= 𝑅𝑓(𝑅𝑓(𝑝, inf{𝑞, 𝑓}), 𝑧) 

= 𝑅𝑐(𝑅𝑓(𝑝, inf{𝑞, 𝑓}), 𝑧) 

= 𝑅𝑐(𝑅𝑐(𝑝, 𝑞), 𝑧) 

 If 𝑧 ∈ ]𝑓, 1𝑀], then 

𝑅𝑐(𝑝, 𝑅𝑐(𝑞, 𝑧)) = 𝑅𝑐(𝑝, 𝑅𝑓(inf{𝑞, 𝑓}, 𝑓)) 
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= 𝑅𝑓(𝑝, 𝑅𝑓(inf{𝑞, 𝑓}, 𝑓)) 

= 𝑅𝑓(𝑅𝑓(𝑝, inf{𝑞, 𝑓}), 𝑓) 

= 𝑅𝑐(𝑅𝑓(𝑝, inf{𝑞, 𝑓}), 𝑧) 

= 𝑅𝑐(𝑅𝑐(𝑝, 𝑞), 𝑧) 

 If 𝑧 ∈ 𝐼𝑓 , then 

𝑅𝑐(𝑝, 𝑅𝑐(𝑞, 𝑧)) = 𝑅𝑐(𝑝, 𝑅𝑓(inf{𝑞, 𝑓}, inf{𝑧, 𝑓})) 

     = 𝑅𝑓(𝑝, 𝑅𝑓(inf{𝑞, 𝑓}, inf{𝑧, 𝑓})) 

                         = 𝑅𝑓(𝑅𝑓(𝑝, inf{𝑞, 𝑓}), inf{𝑧, 𝑓}) 

     = 𝑅𝑐(𝑅𝑓(𝑝, inf{𝑞, 𝑓}), 𝑧) 

     = 𝑅𝑐(𝑅𝑐(𝑝, 𝑞), 𝑧) 

2. Let 𝑝 ∈ ]𝑓, 1𝑀]. In the present case, 

 If 𝑞 ∈ [0𝑀 , 𝑓], then  

 If 𝑧 ∈ [0𝑀 , 𝑓], then 

𝑅𝑐(𝑝, 𝑅𝑐(𝑞, 𝑧)) = 𝑅𝑐(𝑝, 𝑅𝑓(𝑞, 𝑧)) 

= 𝑅𝑓(𝑓, 𝑅𝑓(𝑞, 𝑧)) 

= 𝑅𝑓(𝑅𝑓(𝑓, 𝑞), 𝑧) 

= 𝑅𝑐(𝑅𝑓(𝑓, 𝑞), 𝑧) 

= 𝑅𝑐(𝑅𝑐(𝑝, 𝑞), 𝑧) 

 If 𝑧 ∈ ]𝑓, 1𝑀], then 

𝑅𝑐(𝑝, 𝑅𝑐(𝑞, 𝑧)) = 𝑅𝑐(𝑝, 𝑅𝑓(𝑞, 𝑓)) 

= 𝑅𝑓(𝑓, 𝑅𝑓(𝑞, 𝑓)) 

= 𝑅𝑓(𝑅𝑓(𝑓, 𝑞), 𝑓) 

= 𝑅𝑐(𝑅𝑓(𝑓, 𝑞), 𝑧) 

= 𝑅𝑐(𝑅𝑐(𝑝, 𝑞), 𝑧) 

 If 𝑧 ∈ 𝐼𝑓, then 

𝑅𝑐(𝑝, 𝑅𝑐(𝑞, 𝑧)) = 𝑅𝑐(𝑝, 𝑅𝑓(𝑞, inf{𝑧, 𝑓})) 

= 𝑅𝑓 (𝑓, 𝑅𝑓(𝑞, inf{𝑧, 𝑓})) 

= 𝑅𝑓(𝑅𝑓(𝑓, 𝑞), inf{𝑧, 𝑓}) 

= 𝑅𝑐(𝑅𝑓(𝑓, 𝑞), 𝑧) 

= 𝑅𝑐(𝑅𝑐(𝑝, 𝑞), 𝑧) 

 If 𝑞 ∈ ]𝑓, 1𝑀], then 

 If 𝑧 ∈ [0𝑀 , 𝑓], then 

𝑅𝑐(𝑝, 𝑅𝑐(𝑞, 𝑧)) = 𝑅𝑐 (𝑝, 𝑅𝑓(𝑓, 𝑧)) 

= 𝑅𝑓(𝑓, 𝑅𝑓(𝑓, 𝑧)) 

= 𝑅𝑐(𝑅𝑓(𝑓, 𝑓), 𝑧) 

= 𝑅𝑐(𝑅𝑐(𝑝, 𝑞), 𝑧) 

 If 𝑧 ∈ ]𝑓, 1𝑀], then 

𝑅𝑐(𝑝, 𝑅𝑐(𝑞, 𝑧)) = 𝑅𝑐(𝑝, 𝑇𝑓(𝑞, 𝑧)) 

= 𝑅𝑓(𝑓, 𝑓) 

= 𝑅𝑓(𝑅𝑓(𝑓, 𝑓), 𝑧) 

= 𝑅𝑐(𝑅𝑓(𝑝, 𝑞), 𝑧) 

= 𝑅𝑐(𝑅𝑐(𝑝, 𝑞), 𝑧) 

 If 𝑧 ∈ 𝐼𝑓 , then 

𝑅𝑐(𝑝, 𝑅𝑐(𝑞, 𝑧)) = 𝑅𝑐(𝑝, 𝑅𝑓(𝑓, inf{𝑧, 𝑓})) 

= 𝑅𝑓(𝑓, 𝑅𝑓(𝑓, inf{𝑧, 𝑓})) 

= 𝑅𝑓(𝑅𝑓(𝑓, 𝑓), inf{𝑧, 𝑓}) 

= 𝑅𝑐(𝑅𝑓(𝑓, 𝑓), 𝑧) 

= 𝑅𝑐(𝑅𝑐(𝑝, 𝑞), 𝑧) 

 If 𝑞 ∈ 𝐼𝑓, then 

 If 𝑧 ∈ [0𝑀 , 𝑓], then 

𝑅𝑐(𝑝, 𝑅𝑐(𝑞, 𝑧)) = 𝑅𝑐(𝑝, 𝑅𝑓(inf{𝑞, 𝑓}, 𝑧)) 

= 𝑅𝑓(𝑓, 𝑅𝑓(inf{𝑞, 𝑓}, 𝑧)) 

= 𝑅𝑓(𝑅𝑓(𝑓, inf{𝑞, 𝑓}), 𝑧) 

= 𝑅𝑐(𝑅𝑓(𝑓, inf{𝑞, 𝑓}), 𝑧) 

= 𝑅𝑐(𝑅𝑐(𝑝, 𝑞), 𝑧) 

 If 𝑧 ∈ ]𝑓, 1𝑀], then 

𝑅𝑐(𝑝, 𝑅𝑐(𝑞, 𝑧)) = 𝑅𝑐(𝑝, 𝑅𝑓(inf{𝑞, 𝑓}, 𝑓)) 

= 𝑅𝑓 (𝑓, 𝑅𝑓(inf{𝑞, 𝑓}, 𝑓)) 

= 𝑅𝑓(𝑅𝑓(𝑓, inf{𝑞, 𝑓}), 𝑓) 

= 𝑅(𝑅𝑓(𝑓, inf{𝑞, 𝑓}), 𝑧) 

= 𝑅𝑐(𝑅𝑐(𝑝, 𝑞), 𝑧) 

 If 𝑧 ∈ 𝐼𝑓 , then 

𝑅𝑐(𝑝, 𝑅𝑐(𝑞, 𝑧)) = 𝑅𝑐(𝑝, 𝑅𝑓(inf{𝑞, 𝑓}, inf{𝑧, 𝑓})) 

= 𝑅𝑓 (𝑓, 𝑅𝑓(inf{𝑞, 𝑓}, inf{𝑧, 𝑓})) 

= 𝑅𝑓(𝑅𝑓(𝑓, inf{𝑞, 𝑓}), inf{𝑧, 𝑓}) 

= 𝑅𝑐(𝑅𝑐(𝑝, 𝑞), 𝑧) 

3. Let 𝑝 ∈ 𝐼𝑓. In the present case, 

 If 𝑞 ∈ [0𝑀 , 𝑓], then 

 If 𝑧 ∈ [0𝑀 , 𝑓], then 

𝑅𝑐(𝑝, 𝑅𝑐(𝑞, 𝑧)) = 𝑅𝑐(𝑝, 𝑅𝑓(𝑞, 𝑧)) 

= 𝑅𝑓(inf{𝑝, 𝑓}, 𝑅𝑓(𝑞, 𝑧)) 

= 𝑅𝑓(𝑅𝑓(inf{𝑝, 𝑓}, 𝑞), 𝑧) 

= 𝑅𝑐(𝑅𝑓(inf{𝑝, 𝑓}, 𝑞), 𝑧) 

= 𝑅𝑐(𝑅𝑐(𝑝, 𝑞), 𝑧) 

 If 𝑧 ∈ ]𝑓, 1𝑀], then 

𝑅𝑐(𝑝, 𝑅𝑐(𝑞, 𝑧)) = 𝑅𝑐(𝑝, 𝑅𝑓(𝑞, 𝑓)) 

= 𝑅𝑓(inf{𝑝, 𝑓}, 𝑅𝑓(𝑞, 𝑓)) 

= 𝑅𝑓(𝑅𝑓(inf{𝑝, 𝑓}, 𝑞), 𝑓) 

= 𝑅𝑐(𝑅𝑓(inf{𝑝, 𝑓}, 𝑞), 𝑧) 

= 𝑅𝑐(𝑅𝑐(𝑝, 𝑞), 𝑧) 

 If 𝑧 ∈ 𝐼𝑓, then 

𝑅𝑐(𝑝, 𝑅𝑐(𝑞, 𝑧)) = 𝑅𝑐(𝑝, 𝑅𝑓(𝑞, inf{𝑧, 𝑓})) 

= 𝑅𝑓(inf{𝑝, 𝑓}, 𝑅𝑓(𝑞, inf{𝑧, 𝑓})) 

= 𝑅𝑓(𝑅𝑓(inf{𝑝, 𝑓}, 𝑞), inf{𝑧, 𝑓}) 

= 𝑅𝑐(𝑅𝑓(inf{𝑝, 𝑓}, 𝑞), 𝑧) 

= 𝑅𝑐(𝑅𝑐(𝑝, 𝑞), 𝑧) 

 If 𝑞 ∈ ]𝑓, 1𝑀], then 

 If 𝑧 ∈ [0𝑀 , 𝑓], then 

𝑅𝑐(𝑝, 𝑅𝑐(𝑞, 𝑧)) = 𝑅𝑐(𝑝, 𝑅𝑓(𝑓, 𝑧)) 
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= 𝑅𝑓 (inf{𝑝, 𝑓}, 𝑅𝑓(𝑓, 𝑧)) 

= 𝑅𝑓(𝑅𝑓(inf{𝑝, 𝑓}, 𝑓), 𝑧) 

= 𝑅𝑐(𝑅𝑓(inf{𝑝, 𝑓}, 𝑓), 𝑧) 

= 𝑅𝑐(𝑅𝑐(𝑝, 𝑞), 𝑧) 

 If 𝑧 ∈ ]𝑓, 1𝑀], then 

𝑅𝑐(𝑝, 𝑅𝑐(𝑞, 𝑧)) = 𝑅𝑐(𝑝, 𝑇𝑓(𝑞, 𝑧)) 

= 𝑅𝑓(inf{𝑝, 𝑓}, 𝑓) 

= 𝑅𝑓(inf{𝑝, 𝑓}, 𝑅𝑓(𝑓, 𝑓)) 

= 𝑅𝑓(𝑅𝑓(inf{𝑝, 𝑓}, 𝑓), 𝑓) 

= 𝑅𝑐(𝑅𝑐(𝑝, 𝑞), 𝑧) 

 If 𝑧 ∈ 𝐼𝑓, then 

𝑅𝑐(𝑝, 𝑅𝑐(𝑞, 𝑧)) = 𝑅𝑐(𝑝, 𝑅𝑓(𝑓, inf{𝑧, 𝑓})) 

= 𝑅𝑓 (inf{𝑝, 𝑓}, 𝑅𝑓(𝑓, inf{𝑧, 𝑓})) 

= 𝑅𝑓(𝑅𝑓(inf{𝑝, 𝑓}, 𝑓)) 

= 𝑅𝑐(𝑅𝑐(𝑝, 𝑞), 𝑧) 

 If 𝑞 ∈ 𝐼𝑓 , then 

 If 𝑧 ∈ [0𝑀 , 𝑓], then 

𝑅𝑐(𝑝, 𝑅𝑐(𝑞, 𝑧)) = 𝑅𝑐(𝑝, 𝑅𝑓(inf{𝑞, 𝑓}, 𝑧)) 

= 𝑅𝑓(inf{𝑝, 𝑓}, 𝑅𝑓(inf{𝑞, 𝑓}, 𝑧)) 

= 𝑅𝑓(𝑅𝑓(inf{𝑝, 𝑓}, inf{𝑞, 𝑓}), 𝑧) 

= 𝑅𝑐(𝑅𝑓(inf{𝑝, 𝑓}, inf{𝑞, 𝑓}), 𝑧) 

= 𝑅𝑐(𝑅𝑐(𝑝, 𝑞), 𝑧) 

 If 𝑧 ∈ ]𝑓, 1𝑀], then 

𝑅𝑐(𝑝, 𝑅𝑐(𝑞, 𝑧)) = 𝑅𝑐(𝑝, 𝑅𝑓(inf{𝑞, 𝑓}, 𝑓)) 

= 𝑅𝑓(inf{𝑝, 𝑓}, 𝑅𝑓(inf{𝑞, 𝑓}, 𝑓)) 

= 𝑅𝑓(𝑅𝑓(inf{𝑝, 𝑓}, inf{𝑞, 𝑓}), 𝑓) 

= 𝑅𝑐(𝑅𝑓(inf{𝑝, 𝑓}, inf{𝑞, 𝑓}), 𝑧) 

= 𝑅𝑐(𝑅𝑐(𝑝, 𝑞), 𝑧) 

 If 𝑧 ∈ 𝐼𝑓, then 

𝑅𝑐(𝑝, 𝑅𝑐(𝑞, 𝑧)) = 𝑅𝑐(𝑝, 𝑅𝑓(inf{𝑞, 𝑓}, inf{𝑧, 𝑓})) 

= 𝑅𝑓 (inf{𝑝, 𝑓}, 𝑅𝑓(inf{𝑞, 𝑓}, inf{𝑧, 𝑓})) 

= 𝑅𝑓(𝑅𝑓(inf{𝑝, 𝑓}, inf{𝑞, 𝑓}), inf{𝑧, 𝑓}) 

= 𝑅𝑐(𝑅𝑓(inf{𝑝, 𝑓}, inf{𝑞, 𝑓}), 𝑧) 

= 𝑅𝑐(𝑅𝑐(𝑝, 𝑞), 𝑧) 

It is obvious the fact that 𝑅𝑐 is commutative and 𝑠 is 

an annihilator of 𝑅𝑐.    

Remark 1. Consider the fact that 𝑠, 𝑓 ∈ 𝑀 and 𝑠, 𝑓 ≠

0𝑀 , 1𝑀 and 𝑠 ∈]0𝑀 , 𝑓], a nullnorm 𝑅𝑓 on [0𝑀 , 𝑓] 

having the annihilator 𝑠 and a triangular norm 𝑇𝑓 

acting on [𝑓, 1𝑀].  

i) If 𝐼𝑠 = ∅, in this case the nullnorm 𝑅𝑐 given in 

Theorem 3 coincides with 𝑅(𝑇,𝑆), 𝑅𝑇
𝑆 , 𝑅𝑆

𝑇 given in 

Theorem 1 and Theorem 2.  

ii) If 𝑓 = 𝑠, in this case the nullnorm 𝑅𝑐 given in 

Theorem 3 coincides with 𝑅𝑇
𝑆 given in Theorem 2.  

iii) If 𝑓 is an atom, in this case 𝑓 = 𝑠. From (ii) the 

nullnorm 𝑅𝑐 given in Theorem 3 coincides with 𝑅𝑇
𝑆 

given in Theorem 2.  

iv) The nullnorm 𝑅𝑐 on any bounded lattice having 

the annihilator 𝑠 does not have to coincide with the 

nullnorms 𝑅(𝑇,𝑆), 𝑅𝑆
𝑇 , 𝑅𝑇

𝑆 unless some special 

conditions are specified. Let demonstrate in the 

following example, this argument:  

Example 2. Take the lattice 𝑀 = {0, 𝑠, 𝑏, 𝑐, 𝑓, 1} with 

Hasse diagram shown in Figure 1.  

Given the mapping 𝑅𝑓 on [0𝑀 , 𝑓] as given in Table 1. 

It is possible to check the fact that 𝑅𝑓 is a nullnorm 

on [0𝑀 , 𝑓] having the annihilator 𝑠.  

 

Figure 1. The lattice 𝑀  

Table 1: The nullnorm 𝑅𝑓  on [0𝑀, 𝑓] 

𝑹𝒎 𝟎𝑴 𝒔 𝒃 𝒄 𝒇 

𝟎𝑴 0𝑀 𝑠 0𝑀 0𝑀 𝑠 

𝒔 𝑠 𝑠 𝑠 𝑠 𝑠 

𝒃 0𝑀 𝑠 𝑏 𝑏 𝑓 

𝒄 0𝑀 𝑠 𝑏 𝑐 𝑓 

𝒇 𝑠 𝑠 𝑓 𝑓 𝑓 

Table 2: The nullnorm 𝑅𝑐 on 𝑀 

𝑹𝒄 𝟎𝑴 𝒔 𝒃 𝒄 𝒇 𝟏𝑴 

𝟎𝑴 0𝑀 𝑠 0𝑀 0𝑀 𝑠 𝑠 

𝒔 𝑠 𝑠 𝑠 𝑠 𝑠 𝑠 

𝒃 0𝑀 𝑠 𝑏 𝑏 𝑓 𝑓 

𝒄 0𝑀 𝑠 𝑏 𝑐 𝑓 𝑓 
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𝒇 𝑠 𝑠 𝑓 𝑓 𝑓 𝑓 

𝟏𝑴 𝑠 𝑠 𝑓 𝑓 𝑓 𝟏𝑴 

By applying Theorem 3, for an arbitrary triangular 

norm 𝑇𝑓 on [𝑓, 1𝑀], the corresponding nullnorm 𝑅𝑐 

on 𝑀 with annihilator 𝑠 is shown in Table 2.  

It is obvious the fact that 𝑅𝑐(𝑏, 𝑐) = 𝑏 for the 

elements 𝑏, 𝑐 ∈ 𝑀 from Table 2.  

Let us consider any triangular norm 𝑇 on [𝑠, 1𝑀] and 

any triangular conorm 𝑆 on [0𝑀 , 𝑠] in order to apply 

Theorem 1 and Theorem 2.  

By applying Theorem 1, it is obtained the fact that 

𝑅(𝑇,𝑆)(𝑏, 𝑐) = 𝑠 for the elements 𝑏, 𝑐 ∈ 𝑀.  

By applying Theorem 2, for the elements 𝑏, 𝑐 ∈ 𝑀, it 

is obtained the fact that 𝑅𝑇
𝑆(𝑏, 𝑐) =

𝑆(inf{𝑐, 𝑠}, inf{𝑏, 𝑠}) = 𝑆(0𝑀 , 0𝑀) = 0𝑀 and 

𝑅𝑆
𝑇(𝑏, 𝑐) = 𝑇(sup{𝑐, 𝑠}, sup{𝑏, 𝑠}) = 𝑇(𝑓, 𝑓) that is 

𝑅𝑆
𝑇(𝑏, 𝑐) ≥ 𝑠.  

Therefore, it can be easily seen the fact that the 

nullnorm 𝑅𝑐𝑅 is different from the nullnorms 𝑅𝑆
𝑇 , 𝑅𝑇

𝑆 

and 𝑅(𝑇,𝑆).  

In addition, Example 2 shows the fact that the 

nullnorm 𝑅𝑐 on any bounded lattice having the 

annihilator 𝑠 do not have to coincide with the 

nullnorms 𝑅(𝑇,𝑆), 𝑅𝑆
𝑇 , 𝑅𝑇

𝑆 even if all elements in 𝑀 

are comparable with 𝑓.  

Remark 2. Consider the fact that 𝑠, 𝑓 ∈ 𝑀 and 𝑠, 𝑓 ≠

0𝑀 , 1𝑀 and 𝑠 ∈]0𝑀 , 𝑓], a nullnorm 𝑅𝑓 on [0𝑀 , 𝑓] 

having the annihilator 𝑠 and a triangular norm 𝑇𝑓 on 

[𝑓, 1𝑀]. One can wonder whether the nullnorm 𝑅𝑐 

in Theorem 3 is always an idempotent nullnorm. In 

the following, it is illustrated the fact that this 

hypothesis need not be always true.  

Take the lattice 𝑀 with Hasse diagram shown in 

Figure 2. In the present case, it is obtained the fact 

that  

𝑅𝑐(𝑦, 𝑦) = 𝑅𝑓(inf{𝑦, 𝑓}, inf{𝑦, 𝑓}) = 𝑅𝑓(𝑥, 𝑥) ≤ 𝑠. 

That is, it can not be 𝑅𝑐(𝑦, 𝑦) = 𝑦. So, 𝑅𝑐 is not an 

idempotent nullnorm on 𝑀.  

 

Figure 2. The lattice 𝑀  

Note the fact that the bounded lattice in Figure 2 is 

not distributive. In that case, another natural 

question occurs: if 𝑀 is considered as distributive 

lattice, does the nullnorm 𝑅𝑐 in Theorem 3 need 

always be idempotent? In the following, a negative 

answer to this question is brought.  

Take the distributive lattice 𝑀 with Hasse diagram 

shown in Figure 3. In the present case, it is obtained 

the fact that 𝑅𝑐(𝑦, 𝑦) = 𝑅𝑓(inf{𝑦, 𝑓}, inf{𝑦, 𝑓}) =

𝑅𝑓(𝑥, 𝑥) ≤ 𝑓. That is, it can not be 𝑅𝑐(𝑦, 𝑦) = 𝑦. So, 

the nullnorm 𝑅𝑐 is not idempotent on 𝑀.  

 

Figure 3. The lattice 𝑀  

Note the fact that in the bounded lattice 

characterized by Figure 3, there is an element 

incomparable with the annihilator 𝑠. Then, one 

more question arises: if 𝐼𝑠 = ∅, does the nullnorm 

𝑅𝑐 in Theorem 3 need always be idempotent? In the 

following, a negative answer to this question is 

brought.  

Take the lattice 𝑀 with Hasse diagram shown in 

Figure 4. In this case, we have the fact that 
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𝑅𝑐(𝑥, 𝑥) = 𝑅𝑓(inf{𝑥, 𝑓}, inf{𝑥, 𝑓}) = 𝑅𝑓(𝑠, 𝑠) = 𝑠. 

So, 𝑅𝑐 is not an idempotent nullnorm on 𝑀.  

 

Figure 4. The lattice 𝑀  

Remark 3. Consider the fact that 𝑠, 𝑓 ∈ 𝑀 and 𝑠, 𝑓 ≠

0𝑀 , 1𝑀 and 𝑠 ∈]0𝑀 , 𝑓], a nullnorm 𝑅𝑓 on [0𝑀 , 𝑓] 

having the annihilator 𝑠 and a triangular norm 𝑇𝑓 on 

[𝑓, 1𝑀]. Whenever 𝐼𝑓 ≠ ∅ and we take the fact that 

the triangular norm 𝑇𝑓 on [𝑓, 1𝑀] is the only 

idempotent triangular norm 𝑇∧, in the present case, 

the nullnorm 𝑅𝑐 on 𝑀 given in Theorem 3 can be 

given by the following formula 

𝑅𝑐(∧)(𝑝, 𝑞) = {
𝑅𝑓(𝑝, 𝑞) 𝑖𝑓 (𝑝, 𝑞) ∈ [0𝑀 , 𝑓]

2,

inf{𝑝, 𝑞} 𝑖𝑓 (𝑝, 𝑞) ∈ [𝑓, 1𝑀]
2.

  

If the nullnorm 𝑅𝑓 is idempotent on [0𝑀 , 𝑓], then 

the nullnorm 𝑅𝑐(∧) is idempotent nullnorm on 𝑀 

having the annihilator 𝑠.  

Remark 4. Consider the fact that 𝑠, 𝑓 ∈ 𝑀 and 𝑠, 𝑓 ≠

0𝑀 , 1𝑀 and 𝑠 ∈]0𝑀 , 𝑓], a nullnorm 𝑅𝑓 on [0𝑀 , 𝑓] 

having the annihilator 𝑠 and a triangular norm 𝑇𝑓 on 

[𝑓, 1𝑀]. In the present case, the nullnorm 𝑅𝑐 in 

Theorem 3 need not be the greatest and the 

smallest nullnorm on 𝑀.   

For example, taking the lattice 𝑀 with Hasse 

diagram shown in Figure 5, it is obtained that 

𝑅𝑐(𝑓, 𝑏) = 𝑅𝑓(inf{𝑓, 𝑓}, inf{𝑏, 𝑓}) = 𝑅𝑓(𝑡, 0𝑀)                          

= 𝑠 and 𝑅(∨)(𝑓, 𝑏) = inf{sup{𝑓, 𝑠}, sup{𝑏, 𝑠}} =

inf{𝑓, 𝑧} = 𝑡 for 𝑓, 𝑏 ∈ 𝑀. Since 𝑅𝑐(𝑓, 𝑏) = 𝑠 ≠ 𝑡 =

𝑅(∨)(𝑓, 𝑏), the nullnorm 𝑅𝑐 is not the greatest 

nullnorm on 𝑀. In addition, since 𝑅𝑐(𝑥, 𝑦) =

𝑇𝑓(𝑥, 𝑦) ≥ 𝑓 and 𝑅(∧)(𝑥, 𝑦) = 𝑠 for 𝑥, 𝑦 ∈ 𝑀, the 

nullnorm 𝑅𝑐 is not the smallest nullnorm on 𝑀.  

 

Figure 5. The lattice 𝑀 

Proposition 3. Consider the fact that 𝑠, 𝑓 ∈ 𝑀 and 

𝑠, 𝑓 ≠ 0𝑀 , 1𝑀 and 𝑠 ∈]0𝑀 , 𝑓], a nullnorm 𝑅𝑓 on 

[0𝑀 , 𝑓] having the annihilator 𝑠 and a triangular 

norm 𝑇𝑓 on [𝑓, 1𝑀]. In the present case, the 

nullnorm 𝑅𝑐:𝑀
2 → 𝑀 defined in Theorem 3 can be 

also written by one of the follows:  

𝑅𝑐1(𝑝, 𝑞)

=

{
 
 
 
 
 
 
 

 
 
 
 
 
 
 
𝑆𝑓(𝑝, 𝑞),   if (𝑝, 𝑞) ∈ [0𝑀 , 𝑠]

2

𝑇𝑓(𝑝, 𝑞),   if (𝑝, 𝑞) ∈ [𝑓, 1𝑀[
2

inf{𝑝, 𝑞},   if 𝑝 = 1𝑀 𝑜𝑟 𝑞 = 1𝑀

𝑠 ,  

if 𝑝 ∈ [𝑓, 1𝑀[ and 𝑞 ∈ 𝐼𝑓 ∩ [𝑠, 1𝑀[

or 𝑝 ∈ 𝐼𝑓 ∩ [𝑠, 1𝑀[ and 𝑞 ∈ [𝑓, 1𝑀[

or 𝑝 ∈ [𝑠, 𝑓] and 𝑞 ∈ 𝐼𝑓 ∩ [𝑠, 1𝑀[

or 𝑝 ∈ 𝐼𝑓 ∩ [𝑠, 1𝑀[ and 𝑞 ∈ [𝑠, 𝑓]

or 𝑝 ∈ [𝑓, 1𝑀[ and 𝑞 ∈ [𝑠, 𝑓]

or 𝑝 ∈ [𝑠, 𝑓] and 𝑞 ∈ [𝑓, 1𝑀]

or 𝑝, 𝑞 ∈ 𝐼𝑓 ∩ [𝑠, 1𝑀[

or 𝑝, 𝑞 ∈ [𝑠, 𝑓] or 𝑝, 𝑞 ∈ 𝐷𝑠
𝑅𝑓(inf{𝑝, 𝑓}, inf{𝑞, 𝑓}),   otherwise

 

or 
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𝑅𝑐2(𝑝, 𝑞)

=

{
 
 
 
 
 
 
 

 
 
 
 
 
 
 
𝑆𝑓(𝑝, 𝑞),   if (𝑝, 𝑞) ∈ [0𝑀 , 𝑠]

2

𝑇𝑓(𝑝, 𝑞),   if (𝑝, 𝑞) ∈ [𝑓, 1𝑀[
2

inf{𝑝, 𝑞},   if 𝑝 = 1𝑀 or q = 1𝑀
𝑠,    if 𝑝, 𝑞 ∈ 𝐷𝑠

inf{𝑝, 𝑞, 𝑓} ,  

𝑖𝑓 𝑝 ∈ [𝑓, 1𝑀[ and 𝑞 ∈ 𝐼𝑓 ∩ [𝑠, 1𝑀[

or 𝑝 ∈ 𝐼𝑓 ∩ [𝑠, 1𝑀[ and 𝑞 ∈ [𝑓, 1𝑀[

or 𝑝 ∈ [𝑠, 𝑓] and 𝑞 ∈ 𝐼𝑓 ∩ [𝑠, 1𝑀[

or 𝑝 ∈ 𝐼𝑓 ∩ [𝑠, 1𝑀[ and 𝑞 ∈ [𝑠, 𝑓]

or 𝑝 ∈ [𝑓, 1𝑀[ and 𝑞 ∈ [𝑠, 𝑓]

or 𝑝 ∈ [𝑠, 𝑓] and 𝑞 ∈ [𝑓, 1𝑀]

or 𝑝, 𝑞 ∈ 𝐼𝑓 ∩ [𝑠, 1𝑀[

or 𝑝, 𝑞 ∈ [𝑠, 𝑓]

𝑅𝑓(inf{𝑝, 𝑓}, inf{𝑞, 𝑓}),   otherwise.

 

where 𝑆𝑓 = 𝑅𝑓 ↾ [0𝑀 , 𝑠] is a triangular conorm on 

[0𝑀 , 𝑠].  

Proof. Since 𝑇𝑓 is a triangular norm acting on [𝑓, 1], 

by using the construction methods in (Çaylı 2018) 

and (Ertuğrul et al. 2015), it is obtained the fact that 

the following triangular norms 𝑇1: [𝑠, 1𝑀]
2 →

[𝑠, 1𝑀] and 𝑇2: [𝑠, 1𝑀]
2 → [𝑠, 1𝑀], respectively.  

𝑇1(𝑎, 𝑏) = {
𝑇𝑓(𝑎, 𝑏) 𝑖𝑓 (𝑎, 𝑏) ∈ [𝑓, 1𝑀[

2,

inf{𝑎, 𝑏} 𝑖𝑓 𝑎 = 1𝑀 or 𝑏 = 1𝑀 ,
𝑠 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

 

𝑇2(𝑎, 𝑏) = {

𝑇𝑓(𝑎, 𝑏) 𝑖𝑓 (𝑎, 𝑏) ∈ [𝑓, 1𝑀[
2,

inf{𝑎, 𝑏} 𝑖𝑓 𝑎 = 1𝑀 or 𝑏 = 1𝑀 ,

inf{𝑎, 𝑏, 𝑓} 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

 

In this case, by using the triangular norms 𝑇1 and 𝑇2 

acting on [𝑠, 1𝑀], it is obtained the nullnorms 

𝑅𝑐1:𝑀
2 → 𝑀 and 𝑅𝑐2 : 𝑀2 → 𝑀, respectively, 

having the annihilator 𝑠 ∈ 𝑀\{0𝑀 , 1𝑀} by means of 

the construction approach in Theorem 3. 
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