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Abstract  

In Turkey, the national reference frame was changed for geodetic applications in parallel with the 

increasing use of Global Navigation Satellite System technology.  Due to the reference frame change, 

the three-dimensional (3D) datum transformation has become compulsory between ED50 and WGS84. 

Several 3D datum transformation algorithms have been developed for geodetic applications. The well-

known technique is the Least-Squares (LS) method. In this study, alternative 3D datum transformation 

approaches (including the Total Least-Squares (TLS) and the Weighted TLS (WTLS) methods) were 

compared with the LS method over a test area. The results showed that the WTLS transformed 3D 

coordinates with better accuracy than the LS and TLS methods. 

 

Türkiye’nin Batısında 3B Datum Dönüşümü için En Küçük Kareler 
Yaklaşımlarının Karşılaştırma Analizi 

 

Anahtar kelimeler 

3B datum dönüşümü; 

En küçük kareler (EKK);  

Toplam en küçük 

kareler (TEKK); Ağırlıklı 

toplam en küçük 

kareler (ATEKK). 

Özet 

Türkiye’de, Global Uydu Konumlama Sistemi teknolojisinin artan kullanımına paralel olarak, ulusal 

referans sistemi değiştirilmiştir. Referans sistemi değişikliğine bağlı olarak, ED50 ile WGS84 arasında üç-

boyutlu (3B) datum dönüşümü zorunlu hale gelmiştir. Jeodezik uygulamalar için çeşitli 3B datum 

dönüşüm algoritmaları geliştirilmiştir. En iyi bilinen teknik En-Küçük Kareler (EKK) dır. Bu çalışmada 

alternatif (Toplam En-Küçük Kareler (TEKK) yi ve ağırlıklı TEKK (ATEKK) yi içeren) 3B datum dönüşüm 

yaklaşımları bir test alanında EKK yöntemiyle karşılaştırılmıştır. Sonuçlar ATEKK nin 3B koordinatları EKK 

ve TEKK yöntemlerinden daha doğru dönüştürdüğünü göstermiştir. 

© Afyon Kocatepe Üniversitesi 

 

1. Introduction 

The geodesy is the scientific discipline that deals 

with the determination and depiction of the Earth’s 

geometry, gravitational field, and rotation in a 

three-dimensional (3D) time-varying space. The first 

(geometry) pillar of geodesy is remarking to 

determine the Earth’s size and geometric shape 

with the utmost precision. The geometry of the 

Earth deals with the determination and the 

presentation of precise 3D positions by establishing 

and maintaining the geodetic reference networks. 

The geodetic networks are comprised of reference 

points distributed on the surface of the Earth to 

materialise the geodetic reference systems for the 

geospatial positioning (Pearlman et al. 2006).  

Nowadays, with the advent of space-based 

techniques, Global Navigation Satellite Systems 

(GNSS) (GPS, GLONASS, and the upcoming Galileo) 

have become the leading positioning tools for 

establishing geodetic reference networks because 

for providing highly accurate location and time 

information anywhere on the Earth. GNSS (by a 
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majority, GPS) measurements are extensively used 

for the determination of 3D coordinates in geodetic 

applications. World Geodetic System 1984 (WGS84) 

is a spatial reference frame for GPS measurements; 

however, to materialize the utilization of WGS84, 

countries using different datum have to change the 

datum to WGS84 or perform a datum 

transformation to WGS84.  

The Turkish National Geodetic Network (TNGN) was 

established between 1934 and 1954 by the General 

Command of Mapping using conventional 

techniques. TNGN was based on the European 

Datum 1950 (ED50). Until 2001, all coordinate 

information and cartographic products produced 

nationwide used the TNGN (e.g., legal cadastral and 

property rights). However, this reference frame is 

not well suited to the tectonic structure of Turkey, 

nor was it adequate for modern GNSS-based 

geodetic applications. Therefore, Turkish National 

Fundamental GPS Network (TNFGN) was introduced 

by the General Command of Mapping in 2001 

(Turgut 2010).  

 

The TNFGN is based on ~600 stations, of which 145 

were re-surveyed in 2003 and 172 were  

re-surveyed in 2004. In addition, a 2005 

reconnaissance of ~210 points was performed for 

the improvement and maintenance of TNFGN. The 

3D coordinates and associated velocities of each 

station were computed in ITRF2000 with periodic 

GPS measurements and transformed into ITRF96 

(Ayhan et al. 2002; Caglar 2005; GCM 2014). 

Subsequent comparisons between WGS84 and ITRF 

validate that the two reference systems are 

identical with differences being statistically 

insignificant for most practical purposes. The 

difference is of the order of cms (NGA 2002; 

Schwieger et al. 2009). TNFGN coordinates can be 

considered as WGS84 coordinates for geodetic, 

mapping and surveying applications (Ayhan et al. 

2002). The reference frame change in Turkey make 

compulsory 3D datum transformation between 

ED50 and WGS84.   

The classical Least-Squares (LS) method has 

been generally used for the linear estimation 

problems (e.g., coordinate transformation) in 

geodesy, surveying, and photogrammetry (Tong et 

al. 2011). Golub and Van Loan (1980) introduced the 

Total Least-Squares (TLS) method for the errors-in-

variables (EIV) model and it was solved by Teunissen 

(1988) in an exact geodetic form. Since the 

introduction of this method, widespread attention 

has been given to both TLS and Weighted TLS 

(WTLS) applications for datum (coordinate) 

transformation task in geodesy (Akyilmaz 2007, 

Schaffrin and Feuls 2008, Mahboub 2012, Li et al. 

2013, Fang 2014, Mihajlović and Cvijetinović 2016, 

Zhao 2016). 

The primary objective of this paper was the 

comparison of the LS, TLS, and WTLS transformation 

methods over a test area by using a set of 3D 

cartesian coordinates of the control points. First, the 

theoretical reviews of 3D datum transformation and 

LS approaches were described. Subsequently, the 

test area, data acquisition, and the evaluation 

methodology were outlined. The comparative 

transformation study is detailed. The outputs from 

both methods were interpreted to figure out the 

future studies. 

 

2. Theoretical Background 

The computation of the corresponding of the 

coordinate information produced in a coordinate 

system in another coordinate system is called 

“coordinate transformation”. The coordinate 

transformation is used in the geodetic datum 

transformation, in dealing with the datum shifts for 

deformation analysis, in the conversion of 

cartographic products to a different coordinate 

system, and in the calculation of the field 

coordinates of the image coordinates for 

photogrammetric applications. 

In order to perform coordinate transformation, 

common points whose coordinates are known in 

both coordinate systems are required. If there are 

enough common points, the computations may be 

carried out with the help of the direct formulas as 

the similarity transformation (Gullu 2016). If there 

are more than enough common points, the 

adjustment computations come onto the agenda 

and the parameters that will be used in 

transformation are calculated with the help of the 

adjustment process. The transformation 
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parameters are predicted by accepting the design 

matrix used in forming the functional model of the 

LS method as errorless and assuming that the 

measurements are at the same accuracy (Gullu et al. 

2003). However, there are coordinate values as well 

as constant values used in the design matrix. These 

coordinates contain systematic and random errors. 

The parameters are estimated in the LS method by 

assuming that these errors do not exist (Ghilani and 

Wolf 2006).  

In the TLS method in which the coordinates of 

the common points are accepted as erroneous, 

corrections are made to the constant values and to 

the coordinates in the coefficients matrix used for 

the functional model. Furthermore, the 

transformation parameters are estimated assuming 

that the coordinates are at the same accuracy (Van 

Huffel 1997, Golub and Van Loan 1980, Felus 2004). 

The WTLS method is formed with the inclusion of 

the weights obtained from the variance-covariance 

values (of the coordinates that are used in the TLS 

method) in the adjustment model. An iterative 

algorithm is used in the WTLS method for the 

coordinate transformation. When the difference 

between the predicted parameters reaches an 

acceptable value, the iteration ends and the 

transformation parameters are estimated (Felus 

and Schaffrin 2005, Fang 2011, Jazaeri et al. 2013). 

The seven-parameter (3D) transformation model is 

defined as: 

 

[
𝑋
𝑌
𝑍
] = [

𝑡𝑥
𝑡𝑦
𝑡𝑧

] + 𝑘 [

1 −𝜀𝑧 𝜀𝑦

𝜀𝑧 1 −𝜀𝑥

−𝜀𝑦 𝜀𝑥 1
] [

𝑥
𝑦
𝑧
]      (1) 

 

where (𝑋, 𝑌, 𝑍) are the target system coordinates, 

(𝑥, 𝑦, 𝑧) are the original system coordinates, 

(𝑡𝑥 , 𝑡𝑦,𝑡𝑧) are axis translation parameters, (𝜀𝑥 , 𝜀𝑦,𝜀𝑧) 

are axis rotation angles, and  

k represents the scale factor (Fig. 1). 

 

 
Fig. 1 Seven-parameter similarity transformation. 

 

If the Eq. (1) is re-organized, the following equation 

is obtained: 

[
𝑋
𝑌
𝑍
] = [

1
0
0

     0
     1
     0

     0
     0
     1

 0
   𝑧
−𝑦

−𝑧
   0
    𝑥

     𝑦
  − 𝑥
   0

     𝑥
     𝑦
      𝑧

]    

[
 
 
 
 
 
 
𝑡𝑥
𝑡𝑦
𝑡𝑧
𝜀𝑥

𝜀𝑦

𝜀𝑧

𝑘 ]
 
 
 
 
 
 

    (2) 

 

The Eq. (2) is valid for a single point. There must be 

enough common points ( 3) for estimating the 

parameters. If the Eq. (2) is re-organized for the  

n-number of common points, the following general 

equation is obtained for the coordinate 

transformation (Ren et al. 2015). 

 

[
 
 
 
 
 
 
 
 
 
𝑋1

𝑌1

𝑍1

𝑋2

𝑌2

𝑍2

⋮
𝑋𝑛

𝑌𝑛

𝑍𝑛]
 
 
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 
 
1
0
0

     0
     1
     0

     0
     0
     1

 0
   𝑧1

   −𝑦1

−𝑧1

   0
    𝑥1

     𝑦1

  − 𝑥1

   0

     𝑥1

     𝑦1

      𝑧1

1
0
0

     0
     1
     0

     0
     0
     1

 0
   𝑧2

   −𝑦2

−𝑧2

   0
    𝑥2

     𝑦2

  − 𝑥2

   0

     𝑥2

     𝑦2

      𝑧2

⋮      ⋮      ⋮        ⋮       ⋮        ⋮         ⋮
1
0
0

     0
     1
     0

     0
     0
     1

 0
   𝑧𝑛

   −𝑦𝑛

−𝑧𝑛

   0
    𝑥𝑛

     𝑦𝑛

  − 𝑥𝑛

   0

     𝑥𝑛

     𝑦𝑛

      𝑧𝑛]
 
 
 
 
 
 
 
 
 

    

[
 
 
 
 
 
 
𝑡𝑥
𝑡𝑦
𝑡𝑧
𝜀𝑥

𝜀𝑦

𝜀𝑧

𝑘 ]
 
 
 
 
 
 

(3) 

 

The essential matrices for the adjustment 

computations are formed from the Eq. (3); 
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𝐴 =

[
 
 
 
 
 
 
 
 
 
1
0
0

     0
     1
     0

     0
     0
     1

 0
   𝑧1

   −𝑦1

−𝑧1

   0
    𝑥1

     𝑦1

  − 𝑥1

   0

     𝑥1

     𝑦1

      𝑧1

1
0
0

     0
     1
     0

     0
     0
     1

 0
   𝑧2

   −𝑦2

−𝑧2

   0
    𝑥2

     𝑦2

  − 𝑥2

   0

     𝑥2

     𝑦2

      𝑧2

⋮      ⋮      ⋮        ⋮       ⋮        ⋮         ⋮
1
0
0

     0
     1
     0

     0
     0
     1

 0
   𝑧𝑛

   −𝑦𝑛

−𝑧𝑛

   0
    𝑥𝑛

     𝑦𝑛

  − 𝑥𝑛

   0

     𝑥𝑛

     𝑦𝑛

      𝑧𝑛]
 
 
 
 
 
 
 
 
 

    

            𝑙 =

[
 
 
 
 
 
 
 
 
 
𝑋1

𝑌1

𝑍1

𝑋2

𝑌2

𝑍2

⋮
𝑋𝑛

𝑌𝑛

𝑍𝑛]
 
 
 
 
 
 
 
 
 

     𝑥 =  

[
 
 
 
 
 
 
𝑡𝑥
𝑡𝑦
𝑡𝑧
𝜀𝑥

𝜀𝑦

𝜀𝑧

𝑘 ]
 
 
 
 
 
 

              (4) 

 

where A represents the coefficients matrix, l 

represents the measurements vector, and x 

represents the unknown quantities vector. The 

unknown quantities may be estimated after the 

solution of the normal equations; however, since 

the coordinate values in 𝐴 and 𝑙 matrices are very 

large, the normal equations will become quite large. 

This will disrupt the condition of the normal 

equation coefficients matrix. Therefore, the 

generalized 𝐴 and 𝑙 matrices must be used. For this 

purpose, the deviation amounts from the centroid 

of the common point coordinates may be used as: 

 
𝑥̅𝑖 = 𝑥𝑖 − 𝑥𝑚

𝑦̅𝑖 = 𝑦𝑖 − 𝑦𝑚

𝑧𝑖̅ = 𝑧𝑖 − 𝑧𝑚

     (5) 

 

where (𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖) represent the common point 

coordinates used in transformation, (𝑥𝑚, 𝑦𝑚, 𝑧𝑚) 

represent the centroid of the common point 

coordinates, and (𝑥̅𝑖 , 𝑦̅𝑖 , 𝑧𝑖̅) represent the deviation 

amounts from the centroid (Gullu et al. 2003, Lan et 

al. 2012). If the Eq. (4) is re-organized; the following 

equation is obtained: 

 

𝐴 =

[
 
 
 
 
 
 
 
 
 
1
0
0

     0
     1
     0

     0
     0
     1

 0
   𝑧1̅

   −𝑦̅1

−𝑧1̅

   0
    𝑥̅1

     𝑦̅1

  − 𝑥̅1

   0

     𝑥̅1

     𝑦̅1

      𝑧1̅

1
0
0

     0
     1
     0

     0
     0
     1

 0
   𝑧2̅

   −𝑦̅2

−𝑧2̅

   0
    𝑥̅2

     𝑦̅2

  − 𝑥2

   0

     𝑥̅2

     𝑦̅2

      𝑧2̅

⋮      ⋮      ⋮        ⋮       ⋮        ⋮         ⋮
1
0
0

     0
     1
     0

     0
     0
     1

 0
   𝑧𝑛̅

   −𝑦̅𝑛

−𝑧𝑛̅

   0
    𝑥̅𝑛

     𝑦̅𝑛

  − 𝑥̅𝑛

   0

     𝑥̅𝑛

     𝑦̅𝑛

      𝑧𝑛̅]
 
 
 
 
 
 
 
 
 

    

             𝑙 =

[
 
 
 
 
 
 
 
 
 
 
𝑋̅1

𝑌̅1

𝑍̅1

𝑋̅2

𝑌̅2

𝑍̅2

⋮
𝑋̅𝑛

𝑌̅𝑛

𝑍̅𝑛]
 
 
 
 
 
 
 
 
 
 

     𝑥 =  

[
 
 
 
 
 
 
𝑡𝑥
𝑡𝑦
𝑡𝑧
𝜀𝑥

𝜀𝑦

𝜀𝑧

𝑘 ]
 
 
 
 
 
 

                        (6) 

 

3. LS method 

The measurements made on physical earth contain 

systematic and random errors. These errors may be 

reduced to an acceptable (negligible) level; 

however, they can never be eliminated completely. 

n indicates the number of the measurements, u 

indicates the number of the unknown quantities; 

and, 𝑛 − 𝑢 =  0 symbolizes a measurement issue, 

𝑛 − 𝑢 > 0 symbolizes  an adjustment issue, and 𝑛 −

𝑢 < 0 symbolizes a problem with infinite solutions. 

The purpose of the adjustment computations is to 

determine the exact values of the unknown 

quantities by using more measurements. During the 

time of this process, the measurements need to be 

corrected by measurement residuals (v). The 

objective function of the LS method can be 

constructed as [𝑣𝑇𝑃𝑣] = 𝑚𝑖𝑛. The functional and 

stochastic models of the adjustment computations 

are as follows: 

 

𝑙 + 𝑣 = 𝐴𝑥
𝐾𝑙𝑙 = 𝜎0

2𝑃−1         (7) 

 

In the Eq. (7), 𝑙(nx1) is the measurements vector, 𝑣(nx1) 

is the measurement residuals vector, 𝐴(nxu) is the 

(linearized) coefficients matrix, 𝑥(ux1) is the unknown 

quantities vector,  

𝜎0
2 represents a priori variance, and 𝑃(nxn) is the 
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weight matrix. The following equation is obtained by 

the normal equations of adjustment computations: 

 

(𝐴𝑇𝑃𝐴)𝑥 − 𝐴𝑇𝑃𝑙 = 0

𝑁𝑥 − 𝐴𝑇𝑃𝑙 = 0
        (8) 

 

where N represents the normal equations matrix. 

The estimation of the unknown quantities is carried 

out by the following equation: 

 

𝑥 = (𝐴𝑇𝑃𝐴)−1𝐴𝑇𝑃𝑙        (9) 

 

The condition of the 𝑁 matrix has a 

fundamental importance in the estimation of the 

unknown quantities. If there are fewer 

measurements than unknown quantities or the 

measurements are dependent on each other (linear 

dependency), the 𝑁 matrix has no Cayley inverse. In 

this case, the Moore-Penrose pseudoinverse, a 

generalization of the inverse matrix is employed to 

acquire a distinctive solution (Güllü et al. 2003, 

Akyilmaz 2007, Sisman 2014). 

 

 

4. TLS method 

The TLS approach assumes that both the 

measurements and coefficients matrix contain 

errors (which were ignored in the functional model 

of LS method) (Fig. 2 and Fig. 3). The functional 

model of the TLS method is expressed as: 

 

𝑙 + 𝑣 = (𝐴 − 𝑉𝐴)𝑥      (10) 

 

where 𝑉𝐴 (nxu) represents the correction values of 

the coefficients matrix and 𝑣(nx1) represents the 

correction values of the measurements. In the TLS 

method, the objection function is constructed as 

[𝑣𝑇𝑣] + [𝑣𝑒𝑐𝑉𝐴
𝑇𝑣𝑒𝑐𝑉𝐴] = min. instead of [𝑣𝑇𝑣] =

𝑚𝑖𝑛.   

where vec represents vectoral operation. 

 

 
 

Fig. 2 LS method. 

 

 
Fig.3 TLS method. 

 

After ‖[𝑉̃𝐴; 𝑣̃]‖
𝐹

 minimization procedure, the 

estimation of unknown parameters (𝑥) becomes as 

follows in TLS method.  

 

𝑙 + 𝑣̃ = (𝐴 − 𝑉̃𝐴)𝑥     (11) 

 

By merging 𝐴 and 𝑙 matrices, which consist of 

erroneous values, and by changing the expanded 

[𝐴; 𝑙] matrix according to the Frobenius norm or 

reducing its rank, the following expression is 

obtained. 

 

[𝐴; 𝑙] − [𝐴̃; 𝑙] = [𝑉̃𝐴 − 𝑣̃] = 𝜎𝑢+1𝑈𝑢+1𝑉𝑢+1
𝑇  (12) 

When the Eq. (12) is reorganized, the following 

equation is obtained: 

 

[𝐴 − 𝑉𝐴; 𝑙 − 𝑣] = [𝐴̃; 𝑙] = 𝑈𝑢+1𝜎𝑢+1𝑉𝑢+1
𝑇  (13) 

 

𝐴̃𝑥 − 𝑙 = 0     (14) 
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If the Eq. (14) is reorganized, the following equation 

is obtained: 

 

[𝐴̃   𝑙] [
𝑥

−1
]=0     (15) 

 

In the Singular Value Decomposition (SVD) method, 

in order for the latest component to be (-1), 𝑉𝑢+1is 

divided by its counterpart with opposite sign. The 

unknown quantities vector becomes as follows: 

 

𝑥 = −
1

𝑉𝑢+1,𝑢+1
[𝑉1,𝑢+1 𝑉2,𝑢+1… 𝑉𝑢,𝑢+1]𝑇 (16) 

 

Furthermore, if the TLS normal equations are 

written, it becomes as follows: 

 

(𝐴𝑇𝑃𝐴 − 𝜎𝑢+1
2 𝐼)𝑥 = 𝐴𝑇𝑃𝑙   (17) 

 

The solution of the TLS normal equations is obtained 

as follows: 

 

𝑥 = (𝐴𝑇𝑃𝐴 − 𝜎𝑢+1
2 𝐼)−1𝐴𝑇𝑃𝑙   (18) 

 

Thus, the estimation values of the unknown 

quantities are calculated with the TLS method (Felus 

2004, Markovsky and Van Huffel 2005, Akyilmaz 

2007). 

 

5. WTLS method 

The proper weighting (stochastic) model is crucial in 

the adjustment computations, because the 

measurements used in forming the functional 

model may not share the same precision. The 

weight of a measurement is scaled by its precision 

and it represents relative value of the measurement 

according to the other measurements. The amount 

of the corrections applied to measurements during 

the adjustment computations are controlled by the 

weights (assigning a higher weight for a more 

precise measurement). The functional model of the 

WTLS method (defining the adjustment condition) is 

constructed by Eq. (10) as: 

 

[
𝑣

𝑣𝑒𝑐(𝑉𝐴)]~ ([
0
0
] 𝜎0

2 [
𝑄𝑙 0
0 𝑄𝐴

])      (19) 

 

where 𝜎0
2 represents a priori variance, 

𝑄𝑙(𝑛𝑥𝑛)represents the cofactor matrix of  

𝑙 measurements, and 𝑄𝐴(𝑛𝑢𝑥𝑛𝑢)represents the 

cofactor matrix of 𝐴 coefficients matrix (Van Huffel 

and Vandewalle 1991, Aydin 2016). 

 

𝑃 = 𝑄𝑙
−1

𝑃𝐴 = 𝑄𝐴
−1     (20) 

 

The objection function of the WTLS method can be 

constructed as [𝑣𝑇𝑃𝑣] + [𝑣𝑒𝑐𝑉𝐴
𝑇𝑃𝐴𝑣𝑒𝑐𝑉𝐴] = 𝑚𝑖𝑛.  

In the WTLS method, the measurements and the 

coefficients matrices receive corrections and it has 

an iterative feature because the initial weights are 

defined in a random manner. Initially, the 

estimation of the parameters is obtained with the LS 

method. The iteration procedure continues until the 

difference between the unknown elements is 

reduced until an acceptable value (𝑥𝑖 − 𝑥𝑖−1 ). 

When iteration is completed, the estimated values 

of the unknown quantities give the WTLS solution. 

The stages of the WTLS solution: 

Step 1: The estimation of the unknown quantities 

with LS method; 

 

𝑥 = (𝐴𝑇𝑃𝐴)−1𝐴𝑇𝑃𝑙    (21) 

 

Step 2: Kronecker product (⊗) operation on the 

unknown quantities vector and the identity matrix; 

 

𝑥0 = 𝑥 ⊗ 𝐼     (22) 

 

Step 3: Iteration procedure; 

𝐹𝑜𝑟 𝑖                                         
        𝑄𝑖 = 𝑄𝑙 + 𝑥𝑖−1

𝑇 𝑄𝐴𝑥̂𝑖−1 
                                             

         𝑣𝑒𝑐(𝑉𝐴
𝑖) = −𝑄𝐴𝑥̂𝑖−1𝑄𝑖

−1(𝑙 − 𝐴𝑥𝑖−1)                    

         𝑉̂𝐴
𝑖 = 𝑟𝑒𝑠ℎ𝑎𝑝𝑒[𝑣𝑒𝑐(𝑉𝐴

𝑖)]                        

       𝐴̂𝑖 = 𝐴 − 𝑉̂𝐴
𝑖                                               

         𝑥𝑖 = (𝐴̂𝑖
𝑇𝑄𝑖

−1𝐴̂𝑖)
−1𝐴̂𝑖

𝑇𝑄𝑖
−1(𝑙 − 𝑉𝐴

𝑖𝑥𝑖−1)

        𝜆𝑖 = 𝑄𝑖
−1(𝑙 − 𝐴𝑥𝑖)

𝑒𝑛𝑑 𝑖𝑓 ‖𝑥̂𝑖 − 𝑥𝑖−1‖ < 𝜀
                                   

                   

          (23) 

Step 4: Variance calculation; 

 

𝜎0
2 =

𝜆𝑇(𝑙−𝐴𝑥)

𝑛−𝑢
     (24) 
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Step 5: Calculation of the Variance-Covariance 

matrix; 

 

𝐶𝑥 = 𝜎0
2(𝐴̂𝑖

𝑇𝑄𝑖
−1𝐴̂𝑖)

−1
    (25) 

 

(Markovsky and Van Huffel 2006, Jazaeri  et al. 2013, 

Wang et al. 2016). 

 

6. Test Area, Source Data and Evaluation 

Procedure 

The 3D datum transformation application was 

carried out over a 57000-km2 (270 x 210 km) test 

area covering eight provinces of Turkey which are 

Afyonkarahisar, Bilecik, Burdur, Denizli, Eskisehir, 

Isparta, Kutahya, and Usak, within the geographical 

limits:  

 

37.19 0N ≤ φ ≤ 40.44 0N, 28.74 0E ≤ λ ≤ 31.81 0E. 

 

The 3D datum transformation procedure refers 

to a source that comprised 56 control points (with 

known 3D coordinates - 1σ standard deviations in 

WGS84 and 3D coordinates in ED50) (Fig. 4) 

belonging to TNFGN that has been established 

through surveys between 1997 and 1999. The 

positional accuracies of the points are about 1-3 cm 

whereas the relative accuracies are within the range 

of 0.1 - 0.01 ppm (GCM 2014). 

 

 
Fig. 4 Spatial distribution of control points within the 

test area. 

 

The performance evaluation of the LS, TLS, and 

WTLS methods focused on the 3D coordinate 

differences. The coordinate differences were 

inquired by root-mean-square error (RMSE) value 

due to its appropriateness for comparing small 

differences between known and transformed 

coordinates (Yilmaz and Gullu 2014). RMSE is 

expressed as: 

 

𝑅𝑀𝑆𝐸 = √(
1

𝑝
)∑ [(X, Y, Z)known – (X, Y, Z)transform]2 

𝑝
𝑖=1   (26) 

 

where p indicates the number of the points.  

 

7. Comparative Transformation Study 

The source dataset (56 TNFGN points) was 

arbitrarily classified into two sub-sets as: reference 

(40 points denoted by black triangles in Fig. 4, for 

the modelling procedure) and check (16 points 

denoted by red and green circles in Fig. 4, for the 

comparison procedure). The reference points 

covered the test area from outside. 12 check points 

(red circles) were selected to compose an 

interpolation task and 4 check points (green circles) 

were selected to compose an extrapolation task 

considering the geodetic network constituted by the 

reference dataset (Fig. 4). The classification was 

done to ensure that each dataset was 

representative of all possible variations of the 

source dataset. 

The 3D datum transformation procedure 

consisted of two processes. The first process implied 

the transformation parameters estimation by the 

known 3D coordinates in both datum. In the second 

process, the estimated transformation parameters 

were used to transform the 3D coordinates of the 

points (that are not used in the first stage) from the 

source datum to the target datum.  

The reference points were used for 

determining the seven parameters (three 

translation parameters, three rotation angles and a 

scale ratio) for the 3D datum transformation. The 

performance of the LS, TLS, and WTLS approaches 

are evaluated by the comparison of the known and 

the transformed 3D coordinates of the check points. 

Based on the LS, TLS, and WTLS methods, the 

computations were conducted with MATLAB 9.1® 

software.  

The transformation parameters estimated by 

the LS, TLS, and WTLS methods using  
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40 reference points whose coordinates are known 

in WGS84 and ED50 datum, are given in Table 1. 

 

Table 1 Estimated transformation parameters (WGS84 

 ED50). 

Parameters LS TLS WTLS 

𝑡𝑥 (𝑚. ) 84.90493791 84.90493787 84.87421674 

𝑡𝑦 (𝑚. ) 104.02871052 104.02871294 103.94531728 

𝑡𝑧 (𝑚. ) 127.52388161 127.52388300 127.50569539 

𝜀𝑥 () -0.00000083 -0.00000083 -0.00000083 

𝜀𝑦 () 0 0 0 

𝜀𝑧 () 0.00000194 0.00000194 0.00000194 

𝑘 (𝑝𝑝𝑚) 0.99999894 0.99999894 0.99999894 

 

The coordinates of the 16 check points (12 

interpolation points and 4 extrapolation points) in 

WGS84 datum were transformed into ED50 datum 

by using the transformation parameters estimated. 

The differences between the coordinates 

transformed with the known coordinates (x,y,z) of 

16 check points were calculated, and the statistical 

values for interpolation and extrapolation are given 

in Tables 2, 3, and 4. 

 

 

 

Table 2 The 3D differences and statistics based on the LS 

method (units in m). 

Point LS Method 

x y z 

In
te

rp
o

la
ti

o
n

 

1 0.0092 0.0093 0.0047 

2 -0.0087 0.0110 -0.0065 

3 -0.0005 0.0036 -0.0032 

4 -0.0108 0.0075 0.0066 

5 0.0028 -0.0048 -0.0053 

6 0.0035 0.0120 0.0095 

7 -0.0040 -0.0035 -0.0040 

8 0.0095 0.0102 0.0044 

9 -0.0128 0.0017 -0.0053 

10 0.0029 0.0028 0.0101 

11 -0.0129 -0.0063 -0.0022 

12 0.0121 0.0033 0.0132 

Min -0.0129 -0.0063 -0.0065 

Max 0.0121 0.0120 0.0132 

Mean -0.0008 0.0039 0.0018 

Ex
tr

ap
o

la
ti

o
n

 

13 -0.0049 -0.0031 -0.0033 

14 0.0100 -0.0033 -0.0079 

15 -0.0140 -0.0044 -0.0033 

16 0.0146 -0.0147 -0.0062 

Min -0.0140 -0.0147 -0.0079 

Max 0.0146 -0.0031 -0.0033 

Mean 0.0014 -0.0064 -0.0052 

 

 

 

 

 

Table 3 The 3D differences and statistics based on the TLS 

method (units in m). 

Point TLS Method 

x y z 

In
te

rp
o

la
ti

o
n

 

1 0.0092 0.0093 0.0047 

2 -0.0087 0.0110 -0.0065 

3 -0.0005 0.0036 -0.0032 

4 -0.0108 0.0075 0.0066 

5 0.0028 -0.0048 -0.0053 

6 0.0035 0.0120 0.0095 

7 -0.0040 -0.0035 -0.0040 

8 0.0095 0.0102 0.0044 

9 -0.0128 0.0017 -0.0053 

10 0.0029 0.0028 0.0101 

11 -0.0129 -0.0063 -0.0022 

12 0.0121 0.0033 0.0132 

Min -0.0129 -0.0063 -0.0065 

Max 0.0121 0.0120 0.0132 

Mean -0.0008 0.0039 0.0018 

Ex
tr

ap
o

la
ti

o
n

 
13 -0.0049 -0.0031 -0.0033 

14 0.0100 -0.0033 -0.0079 

15 -0.0140 -0.0044 -0.0033 

16 0.0146 -0.0147 -0.0062 

Min -0.0140 -0.0147 -0.0079 

Max 0.0146 -0.0031 -0.0033 

Mean 0.0014 -0.0064 -0.0052 

 

 

Table 4 The 3D differences and statistics based on the 

WTLS method (units in m). 

Point WTLS Method 

x y z 

In
te

rp
o

la
ti

o
n

 

1 0.0085 0.0086 0.0045 

2 -0.0076 0.0101 -0.0051 

3 -0.0014 0.0040 -0.0034 

4 -0.0095 0.0076 0.0051 

5 0.0020 -0.0049 -0.0038 

6 0.0031 0.0101 0.0078 

7 -0.0033 -0.0040 -0.0026 

8 0.0103 0.0090 0.0035 

9 -0.0113 0.0017 -0.0054 

10 0.0023 0.0029 0.0091 

11 -0.0134 -0.0059 -0.0015 

12 0.0122 0.0031 0.0130 

Min -0.0134 -0.0059 -0.0054 

Max 0.0122 0.0101 0.0130 

Mean -0.0007 0.0035 0.0018 

Ex
tr

ap
o

la
ti

o
n

 

13 -0.0035 -0.0037 -0.0028 

14 0.0098 -0.0037 -0.0055 

15 -0.0130 -0.0041 -0.0035 

16 0.0125 -0.0141 -0.0065 

Min -0.0130 -0.0141 -0.0065 

Max 0.0125 -0.0037 -0.0028 

Mean 0.0014 -0.0064 -0.0046 

 

To evaluate the performance of each 3D datum 

transformation, RMSE values were calculated for 

the 16 check points (Table 5). 
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Table 5 RMSE values of LS, TLS, WTLS methods (p = 16) 

(units in m). 

Method RMSE 

x y z 

LS 0.0094 0.0074 0.0066 

TLS 0.0094 0.0074 0.0066 

WTLS 0.0088 0.0070 0.0059 

 

8. Results and Conclusions 

In this study, the LS, TLS and WTLS methods were 

used to estimate geodetic transformation 

parameters for 3D datum transformation tasks. The 

results were compared in terms of RMSE by using 

the known 3D coordinates of the check points.  

The analysis of the transformation parameters 

given in Table 1 reveals the similarity between the 

parameters based on the LS and TLS methods and it 

can be seen that the parameters based on the WTLS 

method are partially differing (at three translation 

parameters) from the other approaches. The 

evaluation of the coordinate differences of the 

check points presented in Tables 2, 3, and 4 shows 

that the LS and TLS methods gave the identical 

results.  The WTLS method modelled the 3D 

coordinates of check points better than the other 

methods according to the mean values of (-0.0007 

m, 0.0035 m, 0.0018 m for interpolation points; 

0.0014 m, -0.0064 m, -0.0046 m for extrapolation 

points, respectively). By the evaluation of the results 

presented in Table 5, it can be considered that 

RMSEs of the coordinate differences of the check 

points remain identical when the LS or TLS method 

is utilized. In terms of RMSE, the WTLS method 

transformed the 3D coordinates of the check points 

more accurately (± 0.0088 m, ± 0.0070 m, ± 0.0059 

m, respectively) with respect to the LS and TLS 

methods,.  

From the comparative results of evaluating the 

employment of the LS, TLS, and WTLS methods for 

the 3D datum transformation, the following 

conclusions can be drawn: 

(1) The employment of the WTLS method is an 

effective transformation approach for the 3D datum 

transformation in geodetic applications. 

(2) The WTLS method gives better results than 

LS and TLS methods for the 3D datum 

transformation when the coordinate precisions of 

reference points are poor and their correlations 

with check points are strong 

(3) For the 3D datum transformation, the 

differences between the results using the TLS and LS 

methods are negligible.  

(4) With improved geographical coverage and 

with more dense geodetic networks, more accurate 

(3D datum transformation) parameter estimation 

can be expected from the WTLS method and also 

from the LS and TLS methods.  

(5) Both the analysis of the coordinate 

differences based on interpolation and 

extrapolation (check) points perform identically in 

the 3D datum transformation. 

The coordinate transformations are frequently 

used in geodetic applications. In the 3D datum 

transformation applications, more accurate result 

may be required. In various cases, the traditional LS 

method will not usually offer a stable solution 

because of random property of the coefficients 

matrix and the contributions of the errors in the 

observed data in the transformation model. The TLS 

method is employed to overcome the first part of 

the problem. The WTLS method is developed for the 

second part of the problem.  

The WTLS method is theoretically accurate 

than the LS and TLS methods for the 3D datum 

transformation owing to its proper weighting the 

coefficient (design) and the measurement matrices. 

Furthermore, the WTLS method is simple, flexible 

and exact, in contrast to the LS and TLS methods 

that try to realize the seamless 3D datum 

transformation. 
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