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This paper presents three definitions which are natural combination of the definitions of asymptotic equivalence, statistical
convergence, lacunary statistical convergence, and Wijsman convergence. In addition, we also present asymptotically equivalent
(Wijsman sense) analogs of theorems in Patterson and Savaş (2006).

1. Introduction

In 1993, Marouf presented definitions for asymptotically
equivalent and asymptotic regular matrices. In 2003, Patter-
son extended these concepts by presenting an asymptotically
statistical equivalent analog of these definitions and natural
regularity conditions for nonnegative summability matrices.
In 2006, Patterson and Savaş extended the definitions pre-
sented in [1] to lacunary sequences. In addition to these
definitions, natural inclusion theorems were presented. The
concept of Wijsman statistical convergence is implementa-
tion of the concept of statistical convergence to sequences
of sets presented by Nuray and Rhoades in 2012. Similar
to this concept, the concept of Wijsman lacunary statistical
convergence was presented by Ulusu and Nuray in 2012. This
paper extends the definitions presented in [2] to Wijsman
statistical convergent sequences and Wijsman lacunary sta-
tistical convergent sequences. In addition to these definitions,
natural inclusion theorems will also be presented.

2. Definitions and Notations

Definition 1 (see Marouf [3]). Two nonnegative sequences
𝑥 = (𝑥𝑘) and 𝑦 = (𝑦𝑘) are said to be asymptotically equivalent
if

lim
𝑘

𝑥𝑘

𝑦𝑘

= 1 (1)

(denoted by 𝑥 ∼ 𝑦).

Definition 2 (see Fridy [4]). The sequence 𝑥 = (𝑥𝑘) is said to
be statistically convergent to the number 𝐿 if for every 𝜀 > 0,

lim
𝑛

1

𝑛

󵄨
󵄨
󵄨
󵄨
{𝑘 ≤ 𝑛 :

󵄨
󵄨
󵄨
󵄨
𝑥𝑘 − 𝐿

󵄨
󵄨
󵄨
󵄨
≥ 𝜀}

󵄨
󵄨
󵄨
󵄨
= 0. (2)

In this case we write 𝑠𝑡 − lim𝑥𝑘 = 𝐿.

The next definition is natural combination of Definitions
1 and 2.

Definition 3 (see Patterson [1]). Two nonnegative sequences
𝑥 = (𝑥𝑘) and 𝑦 = (𝑦𝑘) are said to be asymptotically statistical
equivalent of multiple 𝐿 provided that for every 𝜀 > 0

lim
𝑛

1

𝑛

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

{𝑘 ≤ 𝑛 :

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑥𝑘

𝑦𝑘

− 𝐿

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≥ 𝜀}

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

= 0 (3)

(denoted by 𝑥

𝑆𝐿
∼ 𝑦) and simply asymptotically statistically

equivalent if 𝐿 = 1.

By a lacunary sequence we mean an increasing integer
sequence 𝜃 = {𝑘𝑟} such that 𝑘0 = 0 and ℎ𝑟 = 𝑘𝑟 − 𝑘𝑟−1 → ∞

as 𝑟 → ∞. Throughout this paper the intervals determined
by 𝜃 will be denoted by 𝐼𝑟 = (𝑘𝑟−1, 𝑘𝑟], and ratio 𝑘𝑟/𝑘𝑟−1 will
be abbreviated by 𝑞𝑟.

Definition 4 (see Patterson and Savaş [2]). Let 𝜃 be a lacunary
sequence; the two nonnegative sequences 𝑥 = (𝑥𝑘) and
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𝑦 = (𝑦𝑘) are said to be asymptotically lacunary statistical
equivalent of multiple 𝐿 provided that for every 𝜀 > 0

lim
𝑟

1

ℎ𝑟

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

{𝑘 ∈ 𝐼𝑟 :

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑥𝑘

𝑦𝑘

− 𝐿

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≥ 𝜀}

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

= 0 (4)

(denoted by 𝑥

𝑆
𝐿

𝜃

∼ 𝑦) and simply asymptotically lacunary
statistically equivalent if 𝐿 = 1.

Definition 5 (see Patterson & Savaş [2]). Let 𝜃 be a lacunary
sequence; two nonnegative number sequences 𝑥 = (𝑥𝑘) and
𝑦 = (𝑦𝑘) are strongly asymptotically lacunary equivalent of
multiple 𝐿 provided that

lim
𝑟

1

ℎ𝑟

∑

𝑘∈𝐼𝑟

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑥𝑘

𝑦𝑘

− 𝐿

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

= 0 (5)

(denoted by 𝑥

𝑁
𝐿

𝜃

∼ 𝑦) and strongly simply asymptotically
lacunary equivalent if 𝐿 = 1.

Let (𝑋, 𝜌) be a metric space. For any point 𝑥 ∈ 𝑋 and any
nonempty subset𝐴 of𝑋, we define the distance from 𝑥 to 𝐴

by

𝑑 (𝑥, 𝐴) = inf
𝑎∈𝐴

𝜌 (𝑥, 𝐴) . (6)

Definition 6 (see Baronti & Papini [5]). Let (𝑋, 𝜌) be a metric
space. For any nonempty closed subset 𝐴,𝐴𝑘 ⊆ 𝑋, we say
that the sequence {𝐴𝑘} is Wijsman convergent to 𝐴 if

lim
𝑘→∞

𝑑 (𝑥, 𝐴𝑘) = 𝑑 (𝑥, 𝐴) (7)

for each 𝑥 ∈ 𝑋. In this case we write 𝑊 − lim𝐴𝑘 = 𝐴.

Definition 7 (see Nuray & Rhoades [6]). Let (𝑋, 𝜌) a metric
space. For any nonempty closed subset 𝐴,𝐴𝑘 ⊆ 𝑋, we say
that the sequence {𝐴𝑘} is Wijsman statistically convergent to
𝐴 if {𝑑(𝑥, 𝐴𝑘)} is statistically convergent to 𝑑(𝑥, 𝐴); that is, for
𝜀 > 0 and for each 𝑥 ∈ 𝑋,

lim
𝑛→∞

1

𝑛

󵄨
󵄨
󵄨
󵄨
{𝑘 ≤ 𝑛 :

󵄨
󵄨
󵄨
󵄨
𝑑 (𝑥, 𝐴𝑘) − 𝑑 (𝑥, 𝐴)

󵄨
󵄨
󵄨
󵄨
≥ 𝜀}

󵄨
󵄨
󵄨
󵄨
= 0. (8)

In this case we write 𝑠𝑡 − lim𝑊𝐴𝑘 = 𝐴 or 𝐴𝑘 → 𝐴(𝑊𝑆).

Also the concept of bounded sequence for sequences of
sets was given by Nuray and Rhoades.

Definition 8 (seeNuray&Rhoades [6]). Let (𝑋, 𝜌) be ametric
space. For any nonempty closed subset 𝐴𝑘 of 𝑋, we say that
the sequence {𝐴𝑘} is bounded if

sup
𝑘

𝑑 (𝑥, 𝐴𝑘) < ∞ (9)

for each 𝑥 ∈ 𝑋. In this case we write {𝐴𝑘} ∈ 𝐿∞.

Definition 9 (see Ulusu & Nuray [7]). Let (𝑋, 𝜌) be a metric
space and let 𝜃 = {𝑘𝑟} be a lacunary sequence. For any non-
empty closed subset 𝐴,𝐴𝑘 ⊆ 𝑋, we say that the sequence

{𝐴𝑘} is Wijsman lacunarily statistically convergent to 𝐴 if
{𝑑(𝑥, 𝐴𝑘)} is lacunarily statistically convergent to 𝑑(𝑥, 𝐴);
that is, for 𝜀 > 0 and for each 𝑥 ∈ 𝑋,

lim
𝑟

1

ℎ𝑟

󵄨
󵄨
󵄨
󵄨
{𝑘 ∈ 𝐼𝑟 :

󵄨
󵄨
󵄨
󵄨
𝑑 (𝑥, 𝐴𝑘) − 𝑑 (𝑥, 𝐴)

󵄨
󵄨
󵄨
󵄨
≥ 𝜀}

󵄨
󵄨
󵄨
󵄨
= 0. (10)

In this case we write 𝑆𝜃 − lim𝑊 = 𝐴 or 𝐴𝑘 → 𝐴(𝑊𝑆𝜃).

Following these results we introduce three new notions
that are asymptotically statistical equivalent (Wijsman sense)
of multiple 𝐿, asymptotically lacunary statistical equivalent
(Wijsman sense) of multiple 𝐿, and strongly asymptotically
lacunary equivalent (Wijsman sense) of multiple 𝐿.

Definition 10. Let (𝑋, 𝜌) be a metric space. For any non-
empty closed subset 𝐴𝑘, 𝐵𝑘 ⊆ 𝑋 such that 𝑑(𝑥, 𝐴𝑘) > 0 and
𝑑(𝑥, 𝐵𝑘) > 0 for each 𝑥 ∈ 𝑋. We say that the sequences {𝐴𝑘}

and {𝐵𝑘} are asymptotically equivalent (Wijsman sense) if for
each 𝑥 ∈ 𝑋,

lim
𝑘

𝑑 (𝑥, 𝐴𝑘)

𝑑 (𝑥, 𝐵𝑘)

= 1 (11)

(denoted by 𝐴𝑘 ∼ 𝐵𝑘).

As an example, consider the following sequences of circles
in the (𝑥, 𝑦)-plane:

𝐴𝑘 = {(𝑥, 𝑦) : 𝑥
2
+ 𝑦
2
+ 2𝑘𝑥 = 0} ,

𝐵𝑘 = {(𝑥, 𝑦) : 𝑥
2
+ 𝑦
2
− 2𝑘𝑥 = 0} .

(12)

Since

lim
𝑘

𝑑 (𝑥, 𝐴𝑘)

𝑑 (𝑥, 𝐵𝑘)

= 1, (13)

the sequences {𝐴𝑘} and {𝐵𝑘} are asymptotically equivalent
(Wijsman sense); that is, 𝐴𝑘 ∼ 𝐵𝑘.

Definition 11. Let (𝑋, 𝜌) be ametric space. For any non-empty
closed subset 𝐴𝑘, 𝐵𝑘 ⊆ 𝑋 such that 𝑑(𝑥, 𝐴𝑘) > 0 and
𝑑(𝑥, 𝐵𝑘) > 0 for each 𝑥 ∈ 𝑋. We say that the sequences {𝐴𝑘}

and {𝐵𝑘} are asymptotically statistically equivalent (Wijsman
sense) of multiple 𝐿 if for every 𝜀 > 0 and for each 𝑥 ∈ 𝑋,

lim
𝑛

1

𝑛

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

{𝑘 ≤ 𝑛 :

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑑 (𝑥, 𝐴𝑘)

𝑑 (𝑥, 𝐵𝑘)

− 𝐿

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≥ 𝜀}

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

= 0 (14)

(denoted by {𝐴𝑘}

𝑊𝑆𝐿
∼ {𝐵𝑘}) and simply asymptotically statis-

tical equivalent (Wijsman sense) if 𝐿 = 1.
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As an example, consider the following sequences of circles
in the (𝑥, 𝑦)-plane:

𝐴𝑘 =

{
{
{

{
{
{

{

{(𝑥, 𝑦) : 𝑥
2
+ 𝑦
2
+ 2𝑘𝑦 = 0} ,

if 𝑘 is a square integer,
{(1, 1)} ,

otherwise,

𝐵𝑘 =

{
{
{

{
{
{

{

{(𝑥, 𝑦) : 𝑥
2
+ 𝑦
2
− 2𝑘𝑦 = 0} ,

if 𝑘 is a square integer,
{(1, 1)} ,

otherwise.

(15)

Since

lim
𝑛

1

𝑛

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

{𝑘 ≤ 𝑛 :

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑑 (𝑥, 𝐴𝑘)

𝑑 (𝑥, 𝐵𝑘)

− 1

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≥ 𝜀}

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

= 0, (16)

the sequences {𝐴𝑘} and {𝐵𝑘} are asymptotically statistically
equivalent (Wijsman sense); that is, {𝐴𝑘}

𝑊𝑆1
∼ {𝐵𝑘}.

Definition 12. Let (𝑋, 𝜌) be a metric space and let 𝜃 be a
lacunary sequence. For any non-empty closed subset 𝐴𝑘,
𝐵𝑘 ⊆ 𝑋 such that 𝑑(𝑥, 𝐴𝑘) > 0 and 𝑑(𝑥, 𝐵𝑘) > 0 for each 𝑥 ∈

𝑋.We say that the sequences {𝐴𝑘} and {𝐵𝑘} are asymptotically
lacunary equivalent (Wijsman sense) of multiple 𝐿 if for each
𝑥 ∈ 𝑋,

lim
𝑟

1

ℎ𝑟

∑

𝑘∈𝐼𝑟

𝑑 (𝑥, 𝐴𝑘)

𝑑 (𝑥, 𝐵𝑘)

= 𝐿 (17)

(denoted by {𝐴𝑘}

𝑊𝑁
𝐿

𝜃

∼ {𝐵𝑘}) and simply asymptotically lacu-
narily equivalent (Wijsman sense) if 𝐿 = 1.

Definition 13. Let (𝑋, 𝜌) be a metric space and let 𝜃 be a
lacunary sequence. For any non-empty closed subset 𝐴𝑘,
𝐵𝑘 ⊆ 𝑋 such that 𝑑(𝑥, 𝐴𝑘) > 0 and 𝑑(𝑥, 𝐵𝑘) > 0 for
each 𝑥 ∈ 𝑋. We say that the sequences {𝐴𝑘} and {𝐵𝑘} are
strongly asymptotically lacunary equivalent (Wijsman sense)
of multiple 𝐿 if for each 𝑥 ∈ 𝑋,

lim
𝑟

1

ℎ𝑟

∑

𝑘∈𝐼𝑟

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑑 (𝑥, 𝐴𝑘)

𝑑 (𝑥, 𝐵𝑘)

− 𝐿

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

= 0 (18)

(denoted by {𝐴𝑘}

[𝑊𝑁]
𝐿

𝜃

∼ {𝐵𝑘}) and simply strongly asymptot-
ically lacunarily equivalent (Wijsman sense) if 𝐿 = 1.

As an example, consider the following sequences:

𝐴𝑘 :=

{
{
{
{
{
{

{
{
{
{
{
{

{

{(𝑥, 𝑦) ∈ R2 :
(𝑥 − √𝑘)

2

𝑘

+

𝑦
2

2𝑘

= 1} ,

if 𝑘𝑟−1 < 𝑘 < 𝑘𝑟−1 + [√ℎ𝑟]

{(1, 1)} ,

otherwise,

𝐵𝑘 :=

{
{
{
{
{
{

{
{
{
{
{
{

{

{(𝑥, 𝑦) ∈ R2 :
(𝑥 + √𝑘)

2

𝑘

+

𝑦
2

2𝑘

= 1} ,

if 𝑘𝑟−1 < 𝑘 < 𝑘𝑟−1 + [√ℎ𝑟]

{(1, 1)} ,

otherwise.

(19)

Since

lim
𝑟

1

ℎ𝑟

∑

𝑘∈𝐼𝑟

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑑 (𝑥, 𝐴𝑘)

𝑑 (𝑥, 𝐵𝑘)

− 1

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

= 0, (20)

the sequences {𝐴𝑘} and {𝐵𝑘} are strongly asymptotically

lacunarily equivalent (Wijsman sense); that is, {𝐴𝑘}

𝑊𝑁
1

𝜃

∼

{𝐵𝑘}.

Definition 14. Let (𝑋, 𝜌) be a metric space and let 𝜃 be a lacu-
nary sequence. For any non-empty closed subset 𝐴𝑘, 𝐵𝑘 ⊆ 𝑋

such that 𝑑(𝑥, 𝐴𝑘) > 0 and 𝑑(𝑥, 𝐵𝑘) > 0 for each 𝑥 ∈ 𝑋.
We say that the sequences {𝐴𝑘} and {𝐵𝑘} are asymptotically
lacunarily statistical equivalent (Wijsman sense) of multiple
𝐿 if for every 𝜀 > 0 and each 𝑥 ∈ 𝑋,

lim
𝑟

1

ℎ𝑟

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

{𝑘 ∈ 𝐼𝑟 :

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑑 (𝑥, 𝐴𝑘)

𝑑 (𝑥, 𝐵𝑘)

− 𝐿

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≥ 𝜀}

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

= 0 (21)

(denoted by {𝐴𝑘}

𝑊𝑆
𝐿

𝜃

∼ {𝐵𝑘}) and simply asymptotically lacun-
arily statistically equivalent (Wijsman sense) if 𝐿 = 1.

As an example, consider the following sequences:

𝐴𝑘 :=

{
{
{
{
{
{
{

{
{
{
{
{
{
{

{

{(𝑥, 𝑦) ∈ R2 : 𝑥2 + (𝑦 − 1)
2
=

1

𝑘

} ,

if 𝑘𝑟−1 < 𝑘 < 𝑘𝑟−1 + [√ℎ𝑟] ,

𝑘 is a square integer,
{(0, 0)} ,

otherwise,

𝐵𝑘 :=

{
{
{
{
{
{
{

{
{
{
{
{
{
{

{

{(𝑥, 𝑦) ∈ R2 : 𝑥2 + (𝑦 + 1)
2
=

1

𝑘

} ,

if 𝑘𝑟−1 < 𝑘 < 𝑘𝑟−1 + [√ℎ𝑟] ,

𝑘 is a square integer,
{(0, 0)} ,

otherwise.

(22)

Since

lim
𝑟

1

ℎ𝑟

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

{𝑘 ∈ 𝐼𝑟 :

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑑 (𝑥, 𝐴𝑘)

𝑑 (𝑥, 𝐵𝑘)

− 1

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≥ 𝜀}

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

= 0, (23)

the sequences {𝐴𝑘} and {𝐵𝑘} are asymptotically lacunarily

statistically equivalent (Wijsman sense); that is, {𝐴𝑘}

𝑊𝑆
1

𝜃

∼

{𝐵𝑘}.

3. Main Results

Theorem 15. Let (𝑋, 𝜌) be a metric space, let 𝜃 = {𝑘𝑟} be a
lacunary sequence, and let 𝐴𝑘, 𝐵𝑘 be non-empty closed subsets
of 𝑋:

(i) (a) {𝐴𝑘}

[𝑊𝑁]
𝐿

𝜃

∼ {𝐵𝑘} ⇒ {𝐴𝑘}

𝑊𝑆
𝐿

𝜃

∼ {𝐵𝑘}

(b) [𝑊𝑁]
𝐿

𝜃
is a proper subset of 𝑊𝑆

𝐿

𝜃
,
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(ii) {𝐴𝑘} ∈ 𝐿∞ and {𝐴𝑘}

𝑊𝑆
𝐿

𝜃

∼ {𝐵𝑘} ⇒ {𝐴𝑘}

[𝑊𝑁]
𝐿

𝜃

∼ {𝐵𝑘},

(iii) 𝑊𝑆
𝐿

𝜃
∩ 𝐿∞ = [𝑊𝑁]

𝐿

𝜃
∩ 𝐿∞,

where 𝐿∞ denotes the set of bounded sequences of sets.

Proof. (i)-(a). Let 𝜀 > 0 and {𝐴𝑘}

[𝑊𝑁]
𝐿

𝜃

∼ {𝐵𝑘}. Then we can
write

∑

𝑘∈𝐼𝑟

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑑 (𝑥, 𝐴𝑘)

𝑑 (𝑥, 𝐵𝑘)

− 𝐿

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≥ ∑

𝑘∈𝐼𝑟

|𝑑(𝑥,𝐴𝑘)/𝑑(𝑥,𝐵𝑘)−𝐿|≥𝜀

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑑 (𝑥, 𝐴𝑘)

𝑑 (𝑥, 𝐵𝑘)

− 𝐿

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≥ 𝜀 ⋅

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

{𝑘 ∈ 𝐼𝑟 :

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑑 (𝑥, 𝐴𝑘)

𝑑 (𝑥, 𝐵𝑘)

− 𝐿

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≥ 𝜀}

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

(24)

which yields the result.
(ii)-(b). Suppose that [𝑊𝑁]

𝐿

𝜃
⊂ 𝑊𝑆

𝐿

𝜃
. Let {𝐴𝑘} and {𝐵𝑘}

be the following sequences:

𝐴𝑘 =

{
{

{
{

{

{𝑘} , if 𝑘𝑟−1 < 𝑘 ≤ 𝑘𝑟−1 + [√ℎ𝑟]

𝑟 = 1, 2, . . .

{0} , otherwise,

𝐵𝑘 = {0} ∀𝑘.

(25)

Note that {𝐴𝑘} is not bounded. We have, for every 𝜀 > 0

and for each 𝑥 ∈ 𝑋,

1

ℎ𝑟

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

{𝑘 ∈ 𝐼𝑟 :

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑑 (𝑥, 𝐴𝑘)

𝑑 (𝑥, 𝐵𝑘)

− 1

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≥ 𝜀}

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

=

[√ℎ𝑟]

ℎ𝑟

󳨀→ 0

as 𝑟 󳨀→ ∞.

(26)

That is, {𝐴𝑘}
𝑊𝑆
1

𝜃

∼ {𝐵𝑘}. On the other hand,

1

ℎ𝑟

∑

𝑘∈𝐼𝑟

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑑 (𝑥, 𝐴𝑘)

𝑑 (𝑥, 𝐵𝑘)

− 𝐿

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

󴀀󴀂󴀠 0 as 𝑟 󳨀→ ∞. (27)

Hence {𝐴𝑘}

[𝑊𝑁]
𝐿

𝜃

≁ {𝐵𝑘}.

(ii) Suppose that {𝐴𝑘} ∈ 𝐿∞ and {𝐴𝑘}

𝑊𝑆
𝐿

𝜃

∼ {𝐵𝑘}. Then we
can assume that

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑑 (𝑥, 𝐴𝑘)

𝑑 (𝑥, 𝐵𝑘)

− 𝐿

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤ 𝑀 (28)

for each 𝑥 ∈ 𝑋 and all 𝑘.

Given 𝜀 > 0, we get

1

ℎ𝑟

∑

𝑘∈𝐼𝑟

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑑 (𝑥, 𝐴𝑘)

𝑑 (𝑥, 𝐵𝑘)

− 𝐿

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

=

1

ℎ𝑟

∑

𝑘∈𝐼𝑟

|𝑑(𝑥,𝐴𝑘)/𝑑(𝑥,𝐵𝑘)−𝐿|≥𝜀

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑑 (𝑥, 𝐴𝑘)

𝑑 (𝑥, 𝐵𝑘)

− 𝐿

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

+

1

ℎ𝑟

∑

𝑘∈𝐼𝑟

|𝑑(𝑥,𝐴𝑘)/𝑑(𝑥,𝐵𝑘)−𝐿|<𝜀

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑑 (𝑥, 𝐴𝑘)

𝑑 (𝑥, 𝐵𝑘)

− 𝐿

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤

𝑀

ℎ𝑟

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

{𝑘 ∈ 𝐼𝑟 :

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑑 (𝑥, 𝐴𝑘)

𝑑 (𝑥, 𝐵𝑘)

− 𝐿

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≥ 𝜀}

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

+ 𝜀.

(29)

Therefore {𝐴𝑘}

[𝑊𝑁]
𝐿

𝜃

∼ {𝐵𝑘}.
(iii) This is an immediate consequences of (i)and (ii).

Theorem 16. Let (𝑋, 𝜌) be a metric space and let 𝐴𝑘, 𝐵𝑘 be
non-empty closed subsets of 𝑋. If 𝜃 = {𝑘𝑟} is a lacunary
sequence with lim inf𝑟 𝑞𝑟 > 1, then

{𝐴𝑘}

𝑊𝑆𝐿
∼ {𝐵𝑘} 󳨐⇒ {𝐴𝑘}

𝑊𝑆
𝐿

𝜃

∼ {𝐵𝑘} .
(30)

Proof. Suppose first that lim inf𝑟 𝑞𝑟 > 1, then there exists a
𝜆 > 0 such that 𝑞𝑟 ≥ 1 + 𝜆 for sufficiently large 𝑟, which
implies that

ℎ𝑟

𝑘𝑟

≥

𝜆

1 + 𝜆

. (31)

If {𝐴𝑘}
𝑊𝑆𝐿
∼ {𝐵𝑘}, then for every 𝜀 > 0, for each 𝑥 ∈ 𝑋, and for

sufficiently large 𝑟, we have

1

𝑘𝑟

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

{𝑘 ≤ 𝑘𝑟 :

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑑 (𝑥, 𝐴𝑘)

𝑑 (𝑥, 𝐵𝑘)

− 𝐿

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≥ 𝜀}

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≥

1

𝑘𝑟

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

{𝑘 ∈ 𝐼𝑟 :

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑑 (𝑥, 𝐴𝑘)

𝑑 (𝑥, 𝐵𝑘)

− 𝐿

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≥ 𝜀}

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≥

𝜆

1 + 𝜆

⋅ (

1

ℎ𝑟

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

{𝑘 ∈ 𝐼𝑟 :

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑑 (𝑥, 𝐴𝑘)

𝑑 (𝑥, 𝐵𝑘)

− 𝐿

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≥ 𝜀}

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

) .

(32)

This completes the proof.

Theorem 17. Let (𝑋, 𝜌) be a metric space and let 𝐴𝑘, 𝐵𝑘 be
non-empty closed subsets of 𝑋. If 𝜃 = {𝑘𝑟} is a lacunary
sequence with lim sup

𝑟
𝑞𝑟 < ∞, then

{𝐴𝑘}

𝑊𝑆
𝐿

𝜃

∼ {𝐵𝑘} 󳨐⇒ {𝐴𝑘}

𝑊𝑆𝐿
∼ {𝐵𝑘} .

(33)

Proof. Let lim sup
𝑟
𝑞𝑟 < ∞. Then there is an𝑀 > 0 such that

𝑞𝑟 < 𝑀 for all 𝑟 ≥ 1. Let {𝐴𝑘}
𝑊𝑆
𝐿

𝜃

∼ {𝐵𝑘} and 𝜀 > 0. There exists
𝑅 > 0 such that for every 𝑗 ≥ 𝑅

𝐴𝑗 =

1

ℎ𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

{𝑘 ∈ 𝐼𝑗 :

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑑 (𝑥, 𝐴𝑘)

𝑑 (𝑥, 𝐵𝑘)

− 𝐿

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≥ 𝜀}

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

< 𝜀. (34)
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We can also find 𝐻 > 0 such that 𝐴𝑗 < 𝐻 for all 𝑗 = 1, 2, . . ..
Now let 𝑡 be any integer satisfying 𝑘𝑟−1 < 𝑡 ≤ 𝑘𝑟, where 𝑟 > 𝑅.

Then we can write

1

𝑡

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

{𝑘 ≤ 𝑡 :

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑑 (𝑥, 𝐴𝑘)

𝑑 (𝑥, 𝐵𝑘)

− 𝐿

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≥ 𝜀}

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤

1

𝑘𝑟−1

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

{𝑘 ≤ 𝑘𝑟 :

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑑 (𝑥, 𝐴𝑘)

𝑑 (𝑥, 𝐵𝑘)

− 𝐿

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≥ 𝜀}

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

=

1

𝑘𝑟−1

{

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

{𝑘 ∈ 𝐼1 :

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑑 (𝑥, 𝐴𝑘)

𝑑 (𝑥, 𝐵𝑘)

− 𝐿

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≥ 𝜀}

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

}

+

1

𝑘𝑟−1

{

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

{𝑘 ∈ 𝐼2 :

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑑 (𝑥, 𝐴𝑘)

𝑑 (𝑥, 𝐵𝑘)

− 𝐿

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≥ 𝜀}

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

}

+ ⋅ ⋅ ⋅ +

1

𝑘𝑟−1

× {

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

{𝑘 ∈ 𝐼𝑟 :

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑑 (𝑥, 𝐴𝑘)

𝑑 (𝑥, 𝐵𝑘)

− 𝐿

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≥ 𝜀}

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

}

=

𝑘1

𝑘𝑟−1𝑘1

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

{𝑘 ∈ 𝐼1 :

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑑 (𝑥, 𝐴𝑘)

𝑑 (𝑥, 𝐵𝑘)

− 𝐿

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≥ 𝜀}

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

+

𝑘2 − 𝑘1

𝑘𝑟−1 (𝑘2 − 𝑘1)

×

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

{𝑘 ∈ 𝐼2 :

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑑 (𝑥, 𝐴𝑘)

𝑑 (𝑥, 𝐵𝑘)

− 𝐿

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≥ 𝜀}

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

+ ⋅ ⋅ ⋅ +

𝑘𝑅 − 𝑘𝑅−1

𝑘𝑟−1 (𝑘𝑅 − 𝑘𝑅−1)

×

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

{𝑘 ∈ 𝐼𝑅 :

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑑 (𝑥, 𝐴𝑘)

𝑑 (𝑥, 𝐵𝑘)

− 𝐿

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≥ 𝜀}

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

+ ⋅ ⋅ ⋅ +

𝑘𝑟 − 𝑘𝑟−1

𝑘𝑟−1 (𝑘𝑟 − 𝑘𝑟−1)

×

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

{𝑘 ∈ 𝐼𝑟 :

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑑 (𝑥, 𝐴𝑘)

𝑑 (𝑥, 𝐵𝑘)

− 𝐿

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≥ 𝜀}

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

=

𝑘1

𝑘𝑟−1

𝐴1 +

𝑘2 − 𝑘1

𝑘𝑟−1

𝐴2 + ⋅ ⋅ ⋅ +

𝑘𝑅 − 𝑘𝑅−1

𝑘𝑟−1

𝐴𝑅

+

𝑘𝑅+1 − 𝑘𝑅

𝑘𝑟−1

𝐴𝑅+1 + ⋅ ⋅ ⋅ +

𝑘𝑟 − 𝑘𝑟−1

𝑘𝑟−1

𝐴𝑟

≤ {sup
𝑗≥1

𝐴𝑗}

𝑘𝑅

𝑘𝑟−1

+ {sup
𝑗≥𝐵

𝐴𝑗}

𝑘𝑟 − 𝑘𝑅

𝑘𝑟−1

≤ 𝐻

𝑘𝐵

𝑘𝑟−1

+ 𝜀𝑀.

(35)

This completes the proof.

CombiningTheorems 16 and 17 we have the following.

Theorem 18. Let (𝑋, 𝜌) be a metric space and let 𝐴𝑘, 𝐵𝑘 be
non-empty closed subsets of 𝑋. If 𝜃 = {𝑘𝑟} is a lacunary
sequence with 1 < lim inf𝑟 𝑞𝑟 ≤ lim sup

𝑟
𝑞𝑟 < ∞, then

{𝐴𝑘}

𝑊𝑆
𝐿

𝜃

∼ {𝐵𝑘} = {𝐴𝑘}

𝑊𝑆𝐿
∼ {𝐵𝑘} .

(36)

Proof. This is an immediate consequence ofTheorems 16 and
17.

References

[1] R. F. Patterson, “On asymptotically statistical equivalent
sequences,” Demonstratio Mathematica, vol. 36, no. 1, pp. 149–
153, 2003.

[2] R. F. Patterson and E. Savaş, “On asymptotically lacunary
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