JOURNAL OF INEQUALITIES AND SPECIAL FUNCTIONS ISSN: 2217-4303, URL: http://ilirias.com/jiasf Volume 7 Issue 4(2016), Pages 225-234.

ASYMPTOTICALLY \mathcal{I}_2 -CESÀRO EQUIVALENCE OF DOUBLE SEQUENCES OF SETS

UĞUR ULUSU, ERDİNÇ DÜNDAR, BÜNYAMİN AYDIN

ABSTRACT. In this paper, we defined concept of asymptotically \mathcal{I}_2 -Cesàro equivalence and investigate the relationships between the concepts of asymptotically strongly \mathcal{I}_2 -Cesàro equivalence, asymptotically strongly \mathcal{I}_2 -lacunary equivalence, asymptotically *p*-strongly \mathcal{I}_2 -Cesàro equivalence and asymptotically *I*2-statistical equivalence of double sequences of sets.

1. INTRODUCTION

The concept of convergence of real number sequences has been extended to statistical convergence independently by Fast [8] and Schoenberg [23]. The idea of \mathcal{I} -convergence was introduced by Kostyrko et al. [12] as a generalization of statistical convergence which is based on the structure of the ideal \mathcal{I} of subset of the set of natural numbers \mathbb{N} . Das et al. [6] introduced the concept of \mathcal{I} -convergence of double sequences in a metric space and studied some properties of this convergence.

Freedman et al. [9] established the connection between the strongly Cesàro summable sequences space and the strongly lacunary summable sequences space. Connor [4] gave the relationships between the concepts of statistical and strongly p-Cesàro convergence of sequences.

There are different convergence notions for sequence of sets. One of them handled in this paper is the concept of Wijsman convergence (see, [1,3,10,14,27,32]). The concepts of statistical convergence and lacunary statistical convergence of sequences of sets were studied in [14, 27]. Also, new convergence notions, for sequences of sets, which is called Wijsman \mathcal{I} -convergence, Wijsman \mathcal{I} -statistical convergence and Wijsman \mathcal{I} -Cesàro summability by using ideal were introduced in [10, 11, 30].

Nuray et al. [17] studied the concepts of Wijsman Cesàro summability and Wijsman lacunary convergence of double sequences of sets and investigate the relationship between them. Also, Nuray et al. [15] studied the concepts of Wijsman \mathcal{I}_2 , \mathcal{I}_2^* -convergence and Wijsman \mathcal{I}_2 , \mathcal{I}_2^* -Cauchy double sequences of sets. Ulusu et al. [26] studied \mathcal{I}_2 -Cesàro summability of double sequences of sets. Dündar et al. [7] investigated \mathcal{I}_2 -lacunary statistical convergence of double sequences of sets.

²⁰¹⁰ Mathematics Subject Classification. 34C41, 40A05, 40A35.

Key words and phrases. Asymptotically equivalence, Cesàro summability, lacunary sequence, statistical convergence, \mathcal{I} -convergence, double sequences of sets, Wijsman convergence.

 $[\]textcircled{C}2016$ Ilirias Publications, Prishtinë, Kosovë.

Submitted September 8, 2016. Published December 5, 2016.

This study supported by Necmettin Erbakan University Scientific Research Coordination Unit with the project number 161210010.

Marouf [13] peresented definitions for asymptotically equivalent and asymptotic regular matrices. This concepts was investigated in [19–21].

The concept of asymptotically equivalence of real numbers sequences which is defined by Marouf [13] has been extended by Ulusu and Nuray [28] to concepts of Wijsman asymptotically equivalence of set sequences. Moreover, natural inclusion theorems are presented. Kişi et al. [11] introduced the concepts of Wijsman asymptotically \mathcal{I} -equivalence of sequences of sets. Ulusu [24] investigated asymptotically \mathcal{I} -Cesàro equivalence of sets.

2. Definitions and Notations

Now, we recall the basic definitions and concepts (See [?, 1, 2, 5-7, 12, 15-17, 22, 25, 26, 29, 31]).

Let (X, ρ) be a metric space. For any point $x \in X$ and any non-empty subset A of X, we define the distance from x to A by

$$d(x,A) = \inf_{a \in A} \rho(x,a).$$

Throughout the paper we take (X, ρ) be a separable metric space and A, A_{kj} be non-empty closed subsets of X.

The double sequence $\{A_{ki}\}$ is Wijsman convergent to A if

$$P - \lim_{k,j \to \infty} d(x, A_{kj}) = d(x, A) \quad or \quad \lim_{k,j \to \infty} d(x, A_{kj}) = d(x, A)$$

for each $x \in X$ and we write $W_2 - \lim A_{kj} = A$.

The double sequence $\{A_{kj}\}$ is Wijsman statistically convergent to A if for every $\varepsilon > 0$ and for each $x \in X$,

$$\lim_{m,n\to\infty}\frac{1}{mn}\Big|\big\{k\le m, j\le n: |d(x,A_{kj})-d(x,A)|\ge \varepsilon\big\}\Big|=0,$$

that is,

$$|d(x, A_{kj}) - d(x, A)| < \varepsilon, \quad \text{a.a.} \ (k, j)$$

and we write $st_2 - \lim_W A_k = A$.

Let $X \neq \emptyset$. A class \mathcal{I} of subsets of X is said to be an ideal in X provided:

i) $\emptyset \in \mathcal{I}$, ii) $A, B \in \mathcal{I}$ implies $A \cup B \in \mathcal{I}$, iii) $A \in \mathcal{I}, B \subset A$ implies $B \in \mathcal{I}$. \mathcal{I} is called a non-trivial ideal if $X \notin \mathcal{I}$.

A non-trivial ideal \mathcal{I} in X is called admissible if $\{x\} \in \mathcal{I}$ for each $x \in X$.

Throughout the paper we take \mathcal{I}_2 as an admissible ideal in $\mathbb{N} \times \mathbb{N}$.

A non-trivial ideal \mathcal{I}_2 of $\mathbb{N} \times \mathbb{N}$ is called strongly admissible if $\{i\} \times \mathbb{N}$ and $\mathbb{N} \times \{i\}$ belong to \mathcal{I}_2 for each $i \in N$.

Let $X \neq \emptyset$. A non empty class \mathcal{F} of subsets of X is said to be a filter in X provided:

i) $\emptyset \notin \mathcal{F}$, *ii*) $A, B \in \mathcal{F}$ implies $A \cap B \in \mathcal{F}$, *iii*) $A \in \mathcal{F}$, $A \subset B$ implies $B \in \mathcal{F}$. If \mathcal{I} is a non-trivial ideal in $X, X \neq \emptyset$, then the class

$$\mathcal{F}(\mathcal{I}) = \left\{ M \subset X : (\exists A \in \mathcal{I})(M = X \setminus A) \right\}$$

is a filter on X, called the filter associated with \mathcal{I} .

The double sequence $\{A_{kj}\}$ is \mathcal{I}_{W_2} -convergent to A if for every $\varepsilon > 0$ and for each $x \in X$,

$$\{(k,j) \in \mathbb{N} \times \mathbb{N} : |d(x,A_{kj}) - d(x,A)| \ge \varepsilon\} \in \mathcal{I}_2$$

and we write $\mathcal{I}_{W_2} - \lim A_{kj} = A$.

The double sequence $\{A_{kj}\}$ is Wijsman \mathcal{I}_2 -Cesàro summable to A if for every $\varepsilon > 0$ and for each $x \in X$,

$$\left\{ (m,n) \in \mathbb{N} \times \mathbb{N} : \left| \frac{1}{mn} \sum_{k,j=1,1}^{m,n} d(x,A_{kj}) - d(x,A) \right| \ge \varepsilon \right\} \in \mathcal{I}_2$$

and we write $A_{kj} \xrightarrow{C_1(\mathcal{I}_{W_2})} A$. The double sequence $\{A_{kj}\}$ is Wijsman strongly \mathcal{I}_2 -Cesàro summable to A if for every $\varepsilon > 0$ and for each $x \in X$,

$$\left\{ (m,n) \in \mathbb{N} \times \mathbb{N} : \frac{1}{mn} \sum_{k,j=1,1}^{m,n} |d(x,A_{kj}) - d(x,A)| \ge \varepsilon \right\} \in \mathcal{I}_2$$

and we write $A_{kj} \stackrel{C_1[\mathcal{I}_{W_2}]}{\longrightarrow} A$.

The double sequences $\{A_{kj}\}$ is Wijsman *p*-strongly \mathcal{I}_2 -Cesàro summable to A if for every $\varepsilon > 0$, for each p positive real number and for each $x \in X$,

$$\left\{ (m,n) \in \mathbb{N} \times \mathbb{N} : \frac{1}{mn} \sum_{k,j=1,1}^{m,n} |d(x,A_{kj}) - d(x,A)|^p \ge \varepsilon \right\} \in \mathcal{I}_2$$

and we write $A_{kj} \xrightarrow{C_p[\mathcal{I}_{W_2}]} A$.

The double sequence $\{A_{kj}\}$ is Wijsman \mathcal{I}_2 -statistical convergent to A or $S(\mathcal{I}_{W_2})$ convergent to A if for every $\varepsilon > 0$, $\delta > 0$ and for each $x \in X$,

$$\left\{ (m,n) \in \mathbb{N} \times \mathbb{N} : \frac{1}{mn} \Big| \left\{ k \le m, j \le n : |d(x,A_{kj}) - d(x,A)| \ge \varepsilon \right\} \Big| \ge \delta \right\} \in \mathcal{I}_2$$

and we write $A_{kj} \to A(S(\mathcal{I}_{W_2}))$.

The double sequence $\theta = \{(k_r, j_s)\}$ is called double lacunary sequence if there exist two increasing sequence of integers such that

$$k_0 = 0, \quad h_r = k_r - k_{r-1} \to \infty \quad \text{as} \quad r \to \infty$$

and

$$j_0 = 0$$
, $\bar{h}_u = j_u - j_{u-1} \to \infty$ as $u \to \infty$.

We use the following notations in the sequel:

$$k_{ru} = k_r j_u, \ h_{ru} = h_r \bar{h}_u, \ I_{ru} = \{(k, j) : k_{r-1} < k \le k_r \text{ and } j_{u-1} < j \le j_u\},$$

 $q_r = \frac{k_r}{k_{r-1}} \text{ and } q_u = \frac{j_u}{j_{u-1}}.$

The double sequence $\{A_{kj}\}$ is said to be Wijsman strongly \mathcal{I}_2 -lacunary convergent to A or $N_{\theta}[\mathcal{I}_{W_2}]$ -convergent to A if for every $\varepsilon > 0$ and for each $x \in X$,

$$A(\varepsilon, x) = \left\{ (r, u) \in \mathbb{N} \times \mathbb{N} : \frac{1}{h_r \overline{h}_u} \sum_{(k, j) \in I_{ru}} |d(x, A_{kj}) - d(x, A)| \ge \varepsilon \right\} \in \mathcal{I}_2$$

and we write $A_{kj} \to A(N_{\theta}[\mathcal{I}_{W_2}])$.

We define $d(x; A_{kj}, B_{kj})$ as follows:

$$d(x; A_{kj}, B_{kj}) = \begin{cases} \frac{d(x, A_{kj})}{d(x, B_{kj})} &, x \notin A_{kj} \cup B_{kj} \\ L &, x \in A_{kj} \cup B_{kj}. \end{cases}$$

The double sequences $\{A_{kj}\}$ and $\{B_{kj}\}$ are Wijsman asymptotically equivalent of multiple L if for each $x \in X$,

$$\lim_{k,j\to\infty} d(x;A_{kj},B_{kj}) = L$$

and we write $A_{kj} \overset{W_2^L}{\sim} B_{kj}$ and simply Wijsman asymptotically equivalent if L = 1. The double sequences $\{A_{kj}\}$ and $\{B_{kj}\}$ are Wijsman asymptotically \mathcal{I}_2 -equivalent

of multiple L if for every $\varepsilon > 0$ and each $x \in X$

$$\{(k,j)\in\mathbb{N}\times\mathbb{N}: |d(x;A_{kj},B_{kj})-L|\geq\varepsilon\}\in\mathcal{I}_2$$

and we write $A_{kj} \stackrel{\mathcal{I}_{W_2}^{L}}{\sim} B_{kj}$ and simply Wijsman asymptotically \mathcal{I}_2 -equivalent if L = 1.

The double sequences $\{A_{kj}\}$ and $\{B_{kj}\}$ are Wijsman asymptotically \mathcal{I}_2 -statistical equivalent of multiple L if for every $\varepsilon > 0$, $\delta > 0$ and for each $x \in X$,

$$\left\{ (m,n) \in \mathbb{N} \times \mathbb{N} : \frac{1}{mn} \Big| \left\{ k \le m, j \le n : |d(x;A_{kj},B_{kj}) - L| \ge \varepsilon \right\} \Big| \ge \delta \right\} \in \mathcal{I}_2$$

and we write $A_{kj} \sim B_{kj}$ and simply Wijsman asymptotically \mathcal{I}_2 -statistical equivalent if L = 1.

Let θ be a double lacunary sequence. The double sequences $\{A_{kj}\}$ and $\{B_{kj}\}$ are said to be Wijsman asymptotically strongly \mathcal{I}_2 -lacunary equivalent of multiple L if for every $\varepsilon > 0$ and for each $x \in X$,

$$\left\{ (r,u) \in \mathbb{N} \times \mathbb{N} : \frac{1}{h_r \overline{h}_u} \sum_{(k,j) \in I_{ru}} |d(x; A_{kj}, B_{kj}) - L| \ge \varepsilon \right\} \in \mathcal{I}_2$$

and we write $A_{kj} \sim B_{kj} B_{kj}$ and simply Wijsman asymptotically strongly \mathcal{I}_2 lacunary equivalent if L = 1.

 $X \subset \mathbb{R}, f, g: X \to \mathbb{R}$ functions and a point $a \in X'$ are given. If $f(x) = \alpha(x)g(x)$ for $\forall x \in \overset{o}{U}_{\delta}(a) \cap X$, then for $x \in X$ we write $f = \mathcal{O}(g)$ as $x \to a$, where for any $\delta > 0, \alpha : X \to \mathbb{R}$ is bounded function on $\overset{o}{U}_{\delta}(a) \cap X$. In this case, if there exists a $c \geq 0$ such that $|f(x)| \leq c|g(x)|$ for $\forall x \in \overset{o}{U}_{\delta}(a) \cap X$, then for $x \in X$, $f = \mathcal{O}(g)$ as $x \to a$.

3. MAIN RESULTS

In this section, we defined concepts of asymptotically \mathcal{I}_2 -Cesàro equivalence, asymptotically strongly \mathcal{I}_2 -Cesàro equivalence and asymptotically p-strongly \mathcal{I}_2 -Cesàro equivalence of double sequences of sets. Also, we investigate the relationship between the concepts of asymptotically strongly \mathcal{I}_2 -Cesàro equivalence, asymptotically strongly \mathcal{I}_2 -lacunary equivalence, asymptotically *p*-strongly \mathcal{I}_2 -Cesàro equivalence and asymptotically \mathcal{I}_2 -statistical equivalence of double sequences of sets.

Definition 3.1. The double sequence $\{A_{kj}\}$ and $\{B_{kj}\}$ are asymptotically \mathcal{I}_2 -Cesàro equivalence of multiple L if for every $\varepsilon > 0$ and for each $x \in X$,

$$\left\{ (m,n) \in \mathbb{N} \times \mathbb{N} : \left| \frac{1}{mn} \sum_{k,j=1,1}^{m,n} d(x; A_{kj}, B_{kj}) - L \right| \ge \varepsilon \right\} \in \mathcal{I}_2$$

In this case, we write $A_{kj} \overset{C_1^L(\mathcal{I}_{W_2})}{\sim} B_{kj}$ and simply asymptotically \mathcal{I}_2 -Cesàro equivalent if L = 1.

Definition 3.2. The double sequence $\{A_{kj}\}$ and $\{B_{kj}\}$ are asymptotically strongly \mathcal{I}_2 -Cesàro equivalence of multiple L if for every $\varepsilon > 0$ and for each $x \in X$,

$$\left\{ (m,n) \in \mathbb{N} \times \mathbb{N} : \frac{1}{mn} \sum_{k,j=1,1}^{m,n} |d(x;A_{kj},B_{kj}) - L| \ge \varepsilon \right\} \in \mathcal{I}_2.$$

In this case, we write $A_{kj} \overset{C_1^L[\mathcal{I}_{W_2}]}{\sim} B_{kj}$ and simply asymptotically strongly \mathcal{I}_2 -Cesàro equivalent if L = 1.

Theorem 3.3. Let θ be a double lacunary sequence. If $\liminf_{r} q_r > 1$, $\liminf_{u} q_u > 1$, then

$$A_{kj} \stackrel{C_1^L[\mathcal{I}_{W_2}]}{\sim} B_{kj} \Rightarrow A_{kj} \stackrel{N_\theta^L[\mathcal{I}_{W_2}]}{\sim} B_{kj}.$$

Proof. Let $\liminf_r q_r > 1$ and $\liminf_u q_u > 1$. Then, there exist $\lambda, \mu > 0$ such that $q_r \ge 1 + \lambda$ and $q_u \ge 1 + \mu$ for all $r, u \ge 1$, which implies that

$$\frac{k_r j_u}{h_r \overline{h}_u} \le \frac{(1+\lambda)(1+\mu)}{\lambda \mu} \quad \text{and} \quad \frac{k_{r-1} j_{u-1}}{h_r \overline{h}_u} \le \frac{1}{\lambda \mu}.$$

Let $\varepsilon > 0$ and for each $x \in X$ we define the set

$$S = \left\{ (k_r, j_u) \in \mathbb{N} \times \mathbb{N} : \frac{1}{k_r j_u} \sum_{i,s=1,1}^{k_r, j_u} |d(x; A_{is}, B_{is}) - L| < \varepsilon \right\}.$$

We can easily say that $S \in \mathcal{F}(\mathcal{I}_2)$, which is a filter of the ideal \mathcal{I}_2 , so we have

$$\begin{split} \frac{1}{h_r \overline{h_u}} \sum_{(i,s) \in I_{ru}} |d(x; A_{is}, B_{is}) - L| \\ &= \frac{1}{h_r \overline{h_u}} \sum_{i,s=1,1}^{k_r, j_u} |d(x; A_{is}, B_{is}) - L| \\ &- \frac{1}{h_r \overline{h_u}} \sum_{i,s=1,1}^{k_r, j_{u-1}} |d(x; A_{is}, B_{is}) - L| \\ &= \frac{k_r j_u}{h_r \overline{h_u}} \left(\frac{1}{k_r j_u} \sum_{i,s=1,1}^{k_r, j_u} |d(x; A_{is}, B_{is}) - L| \right) \\ &- \frac{k_{r-1} j_{u-1}}{h_r \overline{h_u}} \left(\frac{1}{k_{r-1} j_{u-1}} \sum_{i,s=1,1}^{k_{r-1}, j_{u-1}} |d(x; A_{is}, B_{is}) - L| \right) \\ &\leq \left(\frac{(1+\lambda)(1+\mu)}{\lambda \mu} \right) \varepsilon - \left(\frac{1}{\lambda \mu} \right) \varepsilon' \end{split}$$

for every $\varepsilon' > 0$, for each $x \in X$ and $(k_r, j_u) \in S$. Choose $\eta = \left(\frac{(1+\lambda)(1+\mu)}{\lambda\mu}\right)\varepsilon + \left(\frac{1}{\lambda\mu}\right)\varepsilon'$. Therefore,

$$\left\{ (r,u) \in \mathbb{N} \times \mathbb{N} : \frac{1}{h_r \overline{h_u}} \sum_{(k,j) \in I_{ru}} |d(x; A_{kj}, B_{kj}) - L| < \eta \right\} \in \mathcal{F}(\mathcal{I}_2)$$

and it completes the proof.

Theorem 3.4. Let θ be a double lacunary sequence. If $\limsup_{r} q_r < \infty$, $\limsup_{u} q_u < \infty$, then

$$A_{kj} \overset{N_{\theta}^{L}\left[\mathcal{I}_{W_{2}}\right]}{\sim} B_{kj} \Rightarrow A_{kj} \overset{C_{1}^{L}\left[\mathcal{I}_{W_{2}}\right]}{\sim} B_{kj}.$$

Proof. Let $\limsup_r q_r < \infty$ and $\limsup_u q_u < \infty$. Then, there exist M, N > 0 such that $q_r < M$ and $q_u < N$ for all $r, u \ge 1$. Let $A_{kj} \overset{N_{\theta}^L[\mathcal{I}_{W_2}]}{\sim} B_{kj}$ and for $\varepsilon_1, \varepsilon_2 > 0$ define the sets T and R such that

$$T = \left\{ (r, u) \in \mathbb{N} \times \mathbb{N} : \frac{1}{h_r \overline{h_u}} \sum_{(k, j) \in I_{ru}} |d(x; A_{kj}, B_{kj}) - L| < \varepsilon_1 \right\}$$

and

$$R = \left\{ (m,n) \in \mathbb{N} \times \mathbb{N} : \frac{1}{mn} \sum_{k,j=1,1}^{m,n} |d(x;A_{kj},B_{kj}) - L)| < \varepsilon_2 \right\},$$

for each $x \in X$. Let

$$a_{tv} = \frac{1}{h_t \overline{h_v}} \sum_{(i,s) \in I_{tv}} |d(x; A_{is}, B_{is}) - L| < \varepsilon_1,$$

for each $x \in X$ and for all $(t, v) \in T$. It is obvious that $T \in \mathcal{F}(\mathcal{I}_2)$.

Choose m, n is any integer with $k_{r-1} < m < k_r$ and $j_{u-1} < n < j_u$, where $(r, u) \in T$. Then, for each $x \in X$ we have

$$\frac{1}{mn} \sum_{k,j=1,1}^{m,n} |d(x; A_{kj}, B_{kj}) - L| \leq \frac{1}{k_{r-1}j_{u-1}} \sum_{k,j=1,1}^{k_r,j_u} |d(x; A_{kj}, B_{kj}) - L|$$

$$= \frac{1}{k_{r-1}j_{u-1}} \left(\sum_{(k,j)\in I_{11}} |d(x; A_{kj}, B_{kj}) - L| + \sum_{(k,j)\in I_{12}} |d(x; A_{kj}, B_{kj}) - L| + \sum_{(k,j)\in I_{21}} |d(x; A_{kj}, B_{kj}) - L| + \sum_{(k,j)\in I_{22}} |d(x; A_{kj}, B_{kj}) - L| + \sum_{(k,j)\in I_{22}} |d(x; A_{kj}, B_{kj}) - L| + \cdots + \sum_{(k,j)\in I_{ru}} |d(x; A_{kj}, B_{kj}) - L| \right)$$

$$= \frac{k_{1}j_{1}}{k_{r-1}j_{u-1}} \left(\frac{1}{h_{1}h_{1}} \sum_{(k,j)\in I_{11}} |d(x;A_{kj},B_{kj}) - L| \right) + \frac{k_{1}(j_{2}-j_{1})}{k_{r-1}j_{u-1}} \left(\frac{1}{h_{1}h_{2}} \sum_{(k,j)\in I_{12}} |d(x;A_{kj},B_{kj}) - L| \right) + \frac{(k_{2}-k_{1})j_{1}}{k_{r-1}j_{u-1}} \left(\frac{1}{h_{1}h_{2}} \sum_{(k,j)\in I_{21}} |d(x;A_{kj},B_{kj}) - L| \right) + \frac{(k_{2}-k_{1})(j_{2}-j_{1})}{k_{r-1}j_{u-1}} \left(\frac{1}{h_{1}h_{2}} \sum_{(k,j)\in I_{22}} |d(x;A_{kj},B_{kj}) - L| \right) + \dots + \frac{(k_{r}-k_{r-1})(j_{u}-j_{u-1})}{k_{r-1}j_{u-1}} \left(\frac{1}{h_{r}h_{u}} \sum_{(k,j)\in I_{ru}} |d(x;A_{kj},B_{kj}) - L| \right) = \frac{k_{1}j_{1}}{k_{r-1}j_{u-1}} a_{11} + \frac{k_{1}(j_{2}-j_{1})}{k_{r-1}j_{u-1}} a_{12} + \frac{(k_{2}-k_{1})j_{1}}{k_{r-1}j_{u-1}} a_{21} + \frac{(k_{2}-k_{1})(j_{2}-j_{1})}{k_{r-1}j_{u-1}} a_{22} + \dots + \frac{(k_{r}-k_{r-1})(j_{u}-j_{u-1})}{k_{r-1}j_{u-1}} a_{ru} \leq \left(\sum_{(t,v)\in T} a_{tv} \right) \frac{k_{r}j_{u}}{k_{r-1}j_{u-1}} < \varepsilon_{1} \cdot M \cdot N.$$

Choose $\varepsilon_2 = \frac{\varepsilon_1}{M \cdot N}$ and in view of the fact that

$$\bigcup_{(r,u)\in T} \left\{ (m,n) : k_{r-1} < m < k_r, \ j_{u-1} < n < j_u \right\} \subset R,$$

where $T \in \mathcal{F}(\mathcal{I}_2)$, it follows from our assumption on θ that the set R also belongs to $\mathcal{F}(\mathcal{I}_2)$ and this completes the proof of the theorem. \Box

We have the following Theorem by Theorem 3.3 and Theorem 3.4.

Theorem 3.5. Let θ be a double lacunary sequence. If $1 < \liminf_r q_r < \limsup_r q_r < \infty$ and $1 < \liminf_u q_u < \limsup_u q_u < \infty$, then

$$A_{kj} \overset{C_1^L[\mathcal{I}_{W_2}]}{\sim} B_{kj} \Leftrightarrow A_{kj} \overset{N_\theta^L[\mathcal{I}_{W_2}]}{\sim} B_{kj}.$$

Definition 3.6. The double sequences $\{A_{kj}\}$ and $\{B_{kj}\}$ are asymptotically pstrongly \mathcal{I}_2 -Cesàro equivalence of multiple L if for every $\varepsilon > 0$, for each p positive real number and for each $x \in X$,

$$\left\{ (m,n) \in \mathbb{N} \times \mathbb{N} : \frac{1}{mn} \sum_{k,j=1,1}^{m,n} |d(x;A_{kj},B_{kj}) - L|^p \ge \varepsilon \right\} \in \mathcal{I}_2.$$

In this case, we write $A_{kj} \sim \begin{bmatrix} \mathcal{I}_{w_2} \end{bmatrix} B_{kj}$ and simply asymptotically p-strongly \mathcal{I}_2 -Cesàro equivalent if L = 1.

Theorem 3.7. If the sequences $\{A_{kj}\}$ and $\{B_{kj}\}$ are asymptotically p-strongly \mathcal{I}_2 -Cesàro equivalence of multiple L, then $\{A_{kj}\}$ and $\{B_{kj}\}$ are asymptotically \mathcal{I}_2 -statistical equivalence of multiple L.

Proof. Let $A_{kj} \sim \begin{bmatrix} C_p^L[\mathcal{I}_{W_2}] \\ \sim \end{bmatrix} B_{kj}$ and $\varepsilon > 0$ given. Then, for each $x \in X$ we have

$$\sum_{k,j=1,1}^{m,n} |d(x; A_{kj}, B_{kj}) - L|^p \geq \sum_{\substack{k,j=1,1\\ |d(x; A_{kj}, B_{kj}) - L| \geq \varepsilon}}^{m,n} |d(x; A_{kj}, B_{kj}) - L|^p$$

$$\geq \varepsilon^p \cdot \Big| \{k \leq m, j \leq n : |d(x; A_{kj}, B_{kj}) - L| \geq \varepsilon \}$$

and so

$$\frac{1}{\varepsilon^p m n} \sum_{k,j=1,1}^{m,n} |d(x; A_{kj}, B_{kj}) - L|^p \ge \frac{1}{m n} \Big| \big\{ k \le m, j \le n : |d(x; A_{kj}, B_{kj}) - L| \ge \varepsilon \big\} \Big|$$

So for a given $\delta > 0$ and for each $x \in X$

$$\left\{ (m,n) \in \mathbb{N} \times \mathbb{N} : \frac{1}{mn} \left| \left\{ k \le m, j \le n : |d(x; A_{kj}, B_{kj}) - L| \ge \varepsilon \right\} \right| \ge \delta \right\}$$
$$\subseteq \left\{ (m,n) \in \mathbb{N} \times \mathbb{N} : \frac{1}{mn} \sum_{k,j=1,1}^{m,n} |d(x; A_{kj}, B_{kj}) - L|^p \ge \varepsilon^p \cdot \delta \right\} \in \mathcal{I}_2.$$

Therefore, $A_{kj} \overset{S(\mathcal{I}_{W_2})}{\sim} B_{kj}$.

Theorem 3.8. Let $d(x, A_{kj}) = \mathcal{O}(d(x, B_{kj}))$. If $\{A_{kj}\}$ and $\{B_{kj}\}$ are asymptotically \mathcal{I}_2 -statistical equivalence of multiple L, then $\{A_{kj}\}$ and $\{B_{kj}\}$ are asymptotically p-strongly \mathcal{I}_2 -Cesàro equivalence of multiple L.

Proof. Suppose that $d(x, A_{kj}) = \mathcal{O}(d(x, B_{kj}))$ and $A_{kj} \overset{S(\mathcal{I}_{W_2})}{\sim} B_{kj}$. Then, there is an M > 0 such that

$$|d(x; A_{kj}, B_{kj}) - L| \le M,$$

for all k, j and for each $x \in X$. Given $\varepsilon > 0$ and for each $x \in X$, we have

$$\begin{aligned} \frac{1}{mn} \sum_{k,j=1,1}^{m,n} |d(x; A_{kj}, B_{kj}) - L|^p \\ &= \frac{1}{mn} \sum_{\substack{k,j=1,1\\|d(x; A_{kj}, B_{kj}) - L| \ge \varepsilon}}^{m,n} |d(x; A_{kj}, B_{kj}) - L|^p \\ &+ \frac{1}{mn} \sum_{\substack{k,j=1,1\\|d(x; A_{kj}, B_{kj}) - L| < \varepsilon}}^{m,n} |d(x; A_{kj}, B_{kj}) - L|^p \\ &\leq \frac{1}{mn} M^p \cdot \left| \left\{ k \le m, j \le n : |d(x; A_{kj}, B_{kj}) - L| \ge \varepsilon \right\} \right| \\ &+ \frac{1}{mn} \varepsilon^p \cdot \left| \left\{ k \le m, j \le n : |d(x; A_{kj}, B_{kj}) - L| \le \varepsilon \right\} \right| \\ &\leq \frac{M^p}{mn} \cdot \left| \left\{ k \le m, j \le n : |d(x; A_{kj}, B_{kj}) - L| \le \varepsilon \right\} \right| + \varepsilon^p. \end{aligned}$$

Then, for any $\delta > 0$ and for each $x \in X$,

$$\left\{ (m,n) \in \mathbb{N} \times \mathbb{N} : \frac{1}{mn} \sum_{k,j=1,1}^{m,n} |d(x;A_{kj},B_{kj}) - L|^p \ge \delta \right\}$$
$$\subseteq \left\{ (m,n) \in \mathbb{N} \times \mathbb{N} : \frac{1}{mn} \Big| \left\{ k \le m, j \le n : |d(x;A_{kj},B_{kj}) - L| \ge \varepsilon \right\} \Big| \ge \frac{\delta^p}{M^p} \right\} \in \mathcal{I}_2.$$
Therefore, $A_{kj} \overset{C_p^L[\mathcal{I}_{W_2}]}{\sim} B_{kj}.$

References

- Baronti, M. and Papini, P., Convergence of sequences of sets, in Methods of Functional Analysis in Approximation Theory, ISNM 76, Birkhauser, Basel, 1986, pp. 133–155.
- Beer, G., On convergence of closed sets in a metric space and distance functions, Bull. Aust. Math. Soc. 31 (1985), 421–432.
- [3] Beer, G., Wijsman convergence: A survey, Set-Valued Anal. 2 (1994), 77–94.
- [4] Connor, J. S., The statistical and strong p-Cesaro convergence of sequences, Analysis 8 (1988), 47–63.
- [5] Das, P., Savaş, E. and Ghosal, S. Kr., On generalizations of certain summability methods using ideals, Appl. Math. Lett. 24(9) (2011), 1509–1514.
- [6] Das, P., Kostyrko, P., Wilczyński, W. and Malik, P., I and I*-convergence of double sequences, Math. Slovaca 58(5) (2008), 605–620.
- [7] Dündar, E., Ulusu, U. and Aydın, B., *I*₂-lacunary statistical convergence of double sequences of sets, (accepted for publication).
- [8] Fast, H., Sur la convergence statistique, Colloq. Math. 2 (1951), 241–244.
- [9] Freedman, A. R., Sember, J. J. and Raphael, M., Some Cesàro-type summability spaces, Proc. Lond. Math. Soc. 37(3) (1978), 508–520.
- [10] Kişi, Ö. and Nuray, F., New convergence definitions for sequences of sets, Abstr. Appl. Anal. 2013 (2013), Article ID 852796, 6 pages. doi:10.1155/2013/852796.
- [11] Kişi, O., Savaş, E. and Nuray, F., On asymptotically *I*-lacunary statistical equivalence of sequences of sets, (submitted for publication).
- [12] Kostyrko, P., Šalát, T. and Wilczyński, W., *I-Convergence*, Real Anal. Exchange 26(2) (2000), 669–686.
- [13] Marouf, M., Asymptotic equivalence and summability, Int. J. Math. Math. Sci. 16(4) (1993), 755-762.
- [14] Nuray, F. and Rhoades, B. E., Statistical convergence of sequences of sets, Fasc. Math. 49 (2012), 87–99.
- [15] Nuray, F., Dündar, E. and Ulusu, U., Wijsman I2-convergence of double sequences of closed sets, Pure and Applied Mathematics Letters 2 (2014), 35–39.
- [16] Nuray, F., Patterson, R. F. and Dündar, E., Asymptotically lacunary statistical equivalence of double sequences of sets, Demonstratio Mathematica 49(2) (2016), 183-196.
- [17] Nuray, F., Ulusu, U. and Dündar, E., Cesàro summability of double sequences of sets, Gen. Math. Notes 25(1) (2014), 8–18.
- [18] Nuray, F., Ulusu, U. and Dündar, E., Lacunary statistical convergence of double sequences of sets, Soft Computing 20(7) (2016), 2883-2888. doi:10.1007/s00500-015-1691-8.
- [19] Patterson, R. F., On asymptotically statistically equivalent sequences, Demostratio Mathematica 36(1) (2003), 149-153.
- [20] Patterson, R. F. and Savaş, E., On asymptotically lacunary statistically equivalent sequences, Thai J. Math. 4(2) (2006), 267–272.
- [21] Savaş, E., On *I*-asymptotically lacunary statistical equivalent sequences, Adv. Difference Equ. 111 (2013), 7 pages. doi:10.1186/1687-1847-2013-111.
- [22] Savaş, E. and Das, P., A generalized statistical convergence via ideals, Appl. Math. Lett. 24(6) (2011), 826–830.
- [23] Schoenberg, I. J., The integrability of certain functions and related summability methods, Amer. Math. Monthly 66(5) (1959), 361–375.
- [24] Ulusu, U., Asymptotically *I*-Cesàro equivalence of sequences of sets, (accepted for publication).

- [25] Ulusu, U. and Dündar, E., Asymptotically I₂-lacunary statistical equivalence of double sequences of sets, Journal of Inequalities and Special Functions 7(2) (2016), 44–56.
- [26] Ulusu, U., Dündar, E. and Gülle, E., *I*₂-Cesàro summability of double sequences of sets, (Submitted for publication).
- [27] Ulusu, U. and Nuray, F., Lacunary statistical convergence of sequence of sets, Progress in Applied Mathematics 4(2) (2012), 99–109.
- [28] Ulusu, U. and Nuray, F., On asymptotically lacunary statistical equivalent set sequences, Journal of Mathematics 2013 (2013), Article ID 310438, 5 pages. doi:10.1155/2013/310438.
- [29] Ulusu, U. and Nuray, F., On strongly lacunary summability of sequences of sets, J. Appl. Math. Bioinform. 3(3) (2013), 75–88.
- [30] Ulusu, U. and Kişi, Ö., *I-Cesàro summability of sequences of sets*, Electronic Journal of Mathematical Analysis and Applications 5(1) (2017), 278–286.
- [31] Wijsman, R. A., Convergence of sequences of convex sets, cones and functions, Bull. Amer. Math. Soc. 70(1) (1964), 186–188.
- [32] Wijsman, R. A., Convergence of Sequences of Convex sets, Cones and Functions II, Trans. Amer. Math. Soc. 123(1) (1966), 32–45.

Uğur Ulusu

DEPARTMENT OF MATHEMATICS, FACULTY OF SCIENCE AND LITERATURE, AFYON KOCATEPE UNIVERSITY, AFYONKARAHISAR, TURKEY

E-mail address: ulusu@aku.edu.tr

Erdinç Dündar

DEPARTMENT OF MATHEMATICS, FACULTY OF SCIENCE AND LITERATURE, AFYON KOCATEPE UNIVERSITY, AFYONKARAHISAR, TURKEY

E-mail address: edundar@aku.edu.tr

Bünyamın Aydın

EDUCATION FACULTY, NECMETTIN ERBAKAN UNIVERSITY, KONYA, TURKEY *E-mail address*: bunyaminaydin63@hotmail.com