A CHARACTERIZATION OF HOLOMORPHIC BIVARIATE FUNCTIONS OF BOUNDED INDEX

Richard F. Patterson* - Fatih Nuray**
(Communicated by Stanistawa Kanas)

Abstract

The following notion of bounded index for complex entire functions was presented by

 Lepson. function $f(z)$ is of bounded index if there exists an integer N independent of z, such that$$
\max _{\{l: 0 \leq l \leq N\}}\left\{\frac{\left|f^{(l)}(z)\right|}{l!}\right\} \geq \frac{\left|f^{(n)}(z)\right|}{n!} \quad \text { for all } n
$$

The main goal of this paper is extend this notion to holomorphic bivariate function. To that end, we obtain the following definition. A holomorphic bivariate function is of bounded index, if there exist two integers M and N such that M and N are the least integers such that

$$
\max _{\{(k, l): 0,0 \leq k, l \leq M, N\}}\left\{\frac{\left|f^{(k, l)}(z, w)\right|}{k!l!}\right\} \geq \frac{\left|f^{(m, n)}(z, w)\right|}{m!n!} \quad \text { for all } m \text { and } n .
$$

Using this notion we present necessary and sufficient conditions that ensure that a holomorphic bivariate function is of bounded index.

$$
\begin{gathered}
\text { © } 2017 \\
\text { Mathematical Institute } \\
\text { Slovak Academy of Sciences }
\end{gathered}
$$

1. Introduction and preliminary results

An entire function $f(z)$ is of bounded index if there exists an integer N independent of z, such that

$$
\max _{\{l: 0 \leq l \leq N\}}\left\{\frac{\left|f^{(l)}(z)\right|}{l!}\right\} \geq \frac{\left|f^{(n)}(z)\right|}{n!} \quad \text { for all } n .
$$

The least such integer N is called the index of $f(z)$. The main goal of this paper is to extend this notion to multidimensional space. To accomplish this we begin with the presentation of the following notion. Thus, if $f(z, w)$ is a holomorphic function in the bicylinder

$$
\left\{|z-a|<r_{1},|w-b|<r_{2}\right\}
$$

then at all point of the bicylinder

$$
f(z, w)=\sum_{k, l=0,0}^{\infty, \infty} c_{k, l}(z-a)^{k}(w-b)^{l}
$$

where

$$
c_{k, l}=\frac{1}{k!l!}\left[\frac{\partial^{k+l} f(z, w)}{\partial w^{k} \partial z^{l}}\right]_{z=a ; w=b}=\frac{1}{k!l!} f^{(k, l)}(a, b) .
$$

2010 Mathematics Subject Classification: Primary 40B05, Secondary 40C05.
Keywords: RH-regular, double sequences, Pringsheim limit point, p-convergent, double entire functions.

RICHARD F. PATTERSON - FATIH NURAY

Using this notion we present the following notion bounded index for holomorphic bivariate function A holomorphic bivariate function $f(z, w)$ is of bounded index if there exist integers M and N independent of z and w, respectively such that

$$
\max _{\{(k, l): 0,0 \leq k, l \leq M, N\}}\left\{\frac{\left|f^{(k, l)}(z, w)\right|}{k!l!}\right\} \geq \frac{\left|f^{(m, n)}(z, w)\right|}{m!n!} \quad \text { for all } m \text { and } n
$$

We shall say the bivariate holomorphic function f is of bounded index (M, N), if M and N are the smallest integers such that the above inequality holds. Using this notion we present necessary and sufficient conditions that ensure that f is of bounded index.

Let r, s be two positive real number and h and \bar{h} be two positive integers and let z_{0} and w_{0} be two complex numbers then for any holomorphic bivariate entire function $f(z, w)$ with $m=0,1,2, \ldots, h$ and $n=0,1,2, \ldots, \bar{h}$ define

$$
R_{m, n}\left(r, s, h, \bar{h}, z_{0}, w_{0}\right)=\max \left\{\frac{\left|f^{(k, l)}(z, w)\right|}{k!l!}:\left|z-z_{0}\right| \leq \frac{m r}{h},\left|w-w_{0}\right| \leq \frac{n s}{\bar{h}}, k, l=0,1, \ldots\right\}
$$

2. Main results

Lemma 2.1. If $f(z, w)$ is a holomorphic bivariate entire of index (M, N) and if r, s, h, and \bar{h} are such that

$$
\frac{r}{h} \leq \frac{1}{4(M+1)} \quad \text { and } \quad \frac{s}{\bar{h}} \leq \frac{1}{4(N+1)}
$$

then

$$
\begin{equation*}
R_{\alpha, \beta}\left(r, s, h, \bar{h}, z_{0}, w_{0}\right) \leq 2 R_{\alpha-1, \beta-1}\left(r, s, h, \bar{h}, z_{0}, w_{0}\right) \tag{1}
\end{equation*}
$$

for any complex numbers z_{0} and w_{0} and all $\alpha \in[1, h]$ and all $\beta \in[1, \bar{h}]$ and

$$
\begin{equation*}
\max _{k, l \leq M, N ;\left|z-z_{0}\right|=r,\left|w-w_{0}\right|=s}\left\{\frac{\left|f^{(k, l)}(z, w)\right|}{k!l!}\right\} \leq 2 \max _{k, l \leq M, N}\left\{\frac{\left|f^{(k, l)}\left(z_{0}, w_{0}\right)\right|}{k!l!}\right\} \tag{2}
\end{equation*}
$$

Proof. Let us establish (1), suppose there exist integers $\alpha \in[1, h]$ and $\beta \in[1, \bar{h}]$ and complex numbers z_{0} and w_{0} such that

$$
R_{\alpha, \beta}\left(r, s, h, \bar{h}, z_{0}, w_{0}\right)>2 R_{\alpha-1, \beta-1}\left(r, s, h, \bar{h}, z_{0}, w_{0}\right)
$$

Now

$$
R_{\alpha, \beta}\left(r, s, h, \bar{h}, z_{0}, w_{0}\right)=\frac{\left|f^{\left(k_{\alpha}, l_{\beta}\right)}\left(z_{\alpha}, w_{\beta}\right)\right|}{k_{\alpha}!l_{\beta}!}
$$

for some complex numbers z_{α} and w_{β} with $\left|z_{\alpha}-z_{0}\right|=\frac{\alpha r}{h}$ and $\left|w_{\beta}-w_{0}\right|=\frac{\beta s}{h}$ and some integers k_{α} and l_{β} with $k_{\alpha} \in[0, h]$ and $l_{\beta} \in[0, \bar{h}]$. Let us choose z_{α}^{\prime} and w_{β}^{\prime} as follow:

$$
z_{\alpha}^{\prime}=z_{0}+\frac{\alpha-1}{\alpha}\left(z_{\alpha}-z_{0}\right)
$$

and

$$
w_{\beta}^{\prime}=w_{0}+\frac{\beta-1}{\beta}\left(w_{\beta}-w_{0}\right)
$$

Thus

$$
\frac{\left|f^{\left(k_{\alpha}, l_{\beta}\right)}\left(z_{\alpha}^{\prime}, w_{\beta}^{\prime}\right)\right|}{k_{\alpha}!l_{\beta}!} \leq R_{\alpha-1, \beta-1}\left(r, s, h, \bar{h}, z_{0}, w_{0}\right)
$$

because,

$$
\left|z_{\alpha}^{\prime}-z_{0}\right|=\frac{(\alpha-1) r}{h} \quad \text { and } \quad\left|w_{\beta}^{\prime}-w_{0}\right|=\frac{(\beta-1) s}{\bar{h}}
$$

Thus

$$
\frac{\left|f^{\left(k_{\alpha}, l_{\beta}\right)}\left(z_{\alpha}, w_{\beta}\right)\right|}{k_{\alpha}!l_{\beta}!}-\frac{\left|f^{\left(k_{\alpha}, l_{\beta}\right)}\left(z_{\alpha}^{\prime}, w_{\beta}^{\prime}\right)\right|}{k_{\alpha}!l_{\beta}!} \geq R_{\alpha, \beta}\left(r, s, h, \bar{h}, z_{0}, w_{0}\right)-R_{\alpha-1, \beta-1}\left(r, s, h, \bar{h}, z_{0}, w_{0}\right)
$$

In addition, there exist $\delta=z_{\alpha}^{\prime}+d\left(z_{\alpha}-z_{\alpha}^{\prime}\right)$ and $\rho=w_{\beta}^{\prime}+\bar{d}\left(w_{\beta}-w_{\beta}^{\prime}\right)$ for some $d, \bar{d} \in(0,1)$ such that

$$
\begin{aligned}
\frac{\left|f^{\left(k_{\alpha}+1, l_{\beta}+1\right)}(\delta, \rho)\right|}{\left(k_{\alpha}+1\right)!\left(l_{\beta}+1\right)!} & =\frac{1}{\left(k_{\alpha}+1\right)!\left(l_{\beta}+1\right)!} \frac{\left|f^{\left(k_{\alpha}, l_{\beta}\right)}\left(z_{\alpha}, w_{\beta}\right)\right|-\left|f^{\left(k_{\alpha}, l_{\beta}\right)}\left(z_{\alpha}^{\prime}, w_{\beta}^{\prime}\right)\right|}{\left|z_{\alpha}-z_{\alpha}^{\prime}\right|\left|w_{\alpha}-w_{\alpha}^{\prime}\right|} \\
& \geq \frac{1}{\left(k_{\alpha}+1\right)\left(l_{\beta}+1\right)}\left[\frac{R_{\alpha, \beta}\left(r, s, h, \bar{h}, z_{0}, w_{0}\right)-R_{\alpha-1, \beta-1}\left(r, s, h, \bar{h}, z_{0}, w_{0}\right) .}{\left|z_{\alpha}-z_{\alpha}^{\prime}\right|\left|w_{\alpha}-w_{\alpha}^{\prime}\right|}\right] \\
& \geq \frac{1}{(N+1)(M+1)} \frac{\frac{1}{2} R_{\alpha, \beta}\left(r, s, h, \bar{h}, z_{0}, w_{0}\right)}{\frac{1}{2(M+1)} \frac{r}{h} \frac{1}{2(N+1)} \frac{s}{h}} \\
& \geq 2 R_{\alpha, \beta}\left(r, s, h, \bar{h}, z_{0}, w_{0}\right) .
\end{aligned}
$$

Since

$$
\left|\delta-z_{0}\right|<\frac{\alpha r}{h} \quad \text { and } \quad\left|\rho-w_{0}\right|=\frac{\beta s}{\bar{h}}
$$

we have a contradiction, thus

$$
R_{\alpha, \beta}\left(r, s, h, \bar{h}, z_{0}, w_{0}\right) \leq 2 R_{\alpha-1, \beta-1}\left(r, s, h, \bar{h}, z_{0}, w_{0}\right)
$$

The establishment of (2) one should observe that the following clearly from part (1)

$$
R_{h, \bar{h}}\left(r, s, h, \bar{h}, z_{0}, w_{0}\right) \leq 2^{h+\bar{h}-2} R_{0,0}\left(r, s, h, \bar{h}, z_{0}, w_{0}\right)
$$

and since

$$
\begin{aligned}
R_{h, \bar{h}}\left(r, s, h, \bar{h}, z_{0}, w_{0}\right) & =\max _{k, l \leq M, N ;\left|z-z_{0}\right|=r,\left|w-w_{0}\right|=s}\left\{\frac{\left|f^{(k, l)}(z, w)\right|}{k!l!}\right\} \\
& \leq 2 \max _{k, l \leq M, N}\left\{\frac{\left|f^{(k, l)}\left(z_{0}, w_{0}\right)\right|}{k!l!}\right\} \\
& =R_{h, \bar{h}}\left(r, s, h, \bar{h}, z_{0}, w_{0}\right) .
\end{aligned}
$$

Theorem 2.1. A holomorphic bivariate entire function $f(z, w)$ is of bounded index if and only if for each ordered pair (r, s) with $r>0$ and $s>0$ there exist integers $N=N(r)$ and $M=M(s)$ and constants $\bar{N}=\bar{N}(r)>0$ and $\bar{M}=\bar{M}(s)>0$ such that for complex number z and w there exist integers $k=k(z)$ and $l=l(w)$ with $k \in[0, N]$ and $l \in[0, M]$ and

$$
\max _{|\delta-z|=r ;|\rho-w|=s}\left\{\left|f^{(k, l)}(\delta, \rho)\right|\right\} \leq \bar{N} \bar{M}\left|f^{(k, l)}(z, w)\right|
$$

RICHARD F. PATTERSON - FATIH NURAY

Proof. For the first part let us establish that the holomorphic bivariate entire function $f(z, w)$ is of bounded index. Let $r>0, s>0$, and let z and w be complex numbers. Let us also define $M_{l, k}(f, z, w, r, s)$ for $k, l=0,1,2, \ldots$ by

$$
M_{k, l}(f, z, w, r, s)=\max _{|\delta-z|=r ;|\rho-w|=s}\left\{\left|f^{(k, l)}(\delta, \rho)\right|\right\}
$$

Without loss of generality we may assume $r=s=2$ thus there exist integers $N=N(2)$ and $M=M(2)$; and constants $\bar{N}=\bar{N}(r)>0$ and $\bar{M}=\bar{M}(s)>0$ such that for complex number z and w there exist integers $k=k(z) \leq N$ and $l=l(w) \leq M$ with

$$
M_{k, l}(f, z, w, 2,2)=\bar{N} \bar{M}\left|f^{(k, l)}(z, w)\right|
$$

Also there exist integers $n>0$ and $m>0$ such that

$$
\frac{N!\bar{N}}{2^{n}}<1 \quad \text { and } \quad \frac{M!\bar{M}}{2^{m}}<1
$$

Let us now show that the index of $f(z, w)$ does not exceed $(n+N, m+M)$ in each term. Let $\bar{n} \geq n+N, \bar{m} \geq m+M$ and consider complex numbers z_{0} and w_{0}. Now there exist integers $k_{0}=k\left(z_{0}\right) \leq N$ and $l_{0}=l\left(w_{0}\right) \leq M$ such that

$$
M_{k_{0}, l_{0}}\left(f, z_{0}, w_{0}, 2,2\right)=\bar{N} \bar{M}\left|f^{\left(k_{0}, l_{0}\right)}\left(z_{0}, w_{0}\right)\right|
$$

By a generalization of the Cauchy inequality we have the following, for an holomorphic bivariate entire function $g(z, w)$

$$
\left|g^{(k, l)}(z, w)\right| \leq k!l!R^{k} S^{l} \max _{|\delta-z|=R ;|\rho-w|=S}\{|g(\delta, \rho)|\}
$$

for $k, l=0,1,2, \ldots$, and any $R>0$ and $S>0$. Thus, for $g(z, w)=f^{\left(k_{0}, l_{0}\right)}(z, w)$ and $R=S=2$,

$$
\begin{aligned}
\frac{\left|f^{\left(k_{0}+k, l_{0}+l\right)}(z, w)\right|}{k!l!} & \leq 2^{-(k+l)} \max _{|\delta-z|=2 ;|\rho-w|=2}\left\{\left|f^{\left(k_{0}, l_{0}\right)}(\delta, \rho)\right|\right\} \\
& =2^{-(k+l)} M_{k_{0}, l_{0}}(f, z, w, 2,2)
\end{aligned}
$$

Thus

$$
\begin{aligned}
\frac{\left|f^{(m, n)}\left(z_{0}, w_{0}\right)\right|}{m!n!} & \leq \frac{\left|f^{\left(k_{0}+m-k_{0}, l_{0}+n-l_{0}\right)}\left(z_{0}, w_{0}\right)\right|}{\left(m+k_{0}\right)!\left(n+l_{0}\right)} \leq \frac{M_{k_{0}, l_{0}}(f, z, w, 2,2)}{2^{m+n-k_{0}-l_{0}}} \\
& \leq \frac{2^{k_{0}+l_{0}} \bar{M} \bar{N}\left|f^{\left(k_{0}, l_{0}\right)}\left(z_{0}, w_{0}\right)\right|}{2^{m+n}} \leq \frac{2^{M+N} \bar{M} \bar{N}\left|f^{\left(k_{0}, l_{0}\right)}\left(z_{0}, w_{0}\right)\right|}{2^{m+n}} \\
& \leq \frac{\bar{M} \bar{N}\left|f^{\left(k_{0}, l_{0}\right)}\left(z_{0}, w_{0}\right)\right|}{2^{\bar{m}+\bar{n}}} \leq \frac{\left|f^{\left(k_{0}, l_{0}\right)}\left(z_{0}, w_{0}\right)\right|}{N!M!} \\
& \leq \frac{\left|f^{\left(k_{0}, l_{0}\right)}\left(z_{0}, w_{0}\right)\right|}{k_{0}!l_{0}!}
\end{aligned}
$$

Thus the index of $f(z, w)$ at $\left(z_{0}, w_{0}\right)$ does not exceed $(\bar{m}+M, \bar{n}+N)$ and since $\left(z_{0}, w_{0}\right)$ was arbitrary, the index of f is bounded. Now suppose $f(z, w)$ is of bounded index (K, L). Thus for $r>0$ and $s>0$ let's choose $M=M(r)=K, N=N(s)=L$ and $\bar{M}=\bar{M}(r)=2^{\Delta+\bar{\Delta}} K!L!$ for some positive integers Δ and $\bar{\Delta}$ such that

$$
\frac{r s}{\Delta \bar{\Delta}} \leq \frac{1}{16(L+1)(K+1)}
$$

For complex numbers z_{0} and w_{0} let $k=k\left(z_{0}\right)$ and $l=l\left(w_{0}\right)$ be the index of f at $\left(z_{0}, w_{0}\right)$. Thus $k \leq M=K$ and $l \leq N=L$. Thus by part (2) of Lemma 2.1

$$
\begin{aligned}
\max _{\alpha \beta \leq K, L ;\left|z-z_{0}\right|=r,\left|w-w_{0}\right|=s}\left\{\frac{\left|f^{(\alpha, \beta)}(z, w)\right|}{\alpha!\beta!}\right\} & \leq 2^{\Delta+\bar{\Delta}} \max _{\alpha, \beta \leq K, L}\left\{\frac{\left|f^{(\alpha, \beta)}\left(z_{0}, w_{0}\right)\right|}{\alpha!\beta!}\right\} \\
& =2^{\Delta+\bar{\Delta}}\left\{\frac{\left|f^{(k, l)}\left(z_{0}, w_{0}\right)\right|}{k!l!}\right\}
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
M_{k, l}\left(f, z_{0}, w_{0}, r, s\right) & =\max _{\left|z-z_{0}\right|=r,\left|w-w_{0}\right|=s}\left\{\left|f^{(k, l)}(z, w)\right|\right\} \\
& \leq M!N!\max _{\alpha \beta \leq N, M ;\left|z-z_{0}\right|=r,\left|w-w_{0}\right|=s}\left\{\frac{\left|f^{(\alpha, \beta)}(z, w)\right|}{\alpha!\beta!}\right\} \\
& \leq M!N!2^{\Delta+\bar{\Delta}}\left\{\frac{\left|f^{(k, l)}\left(z_{0}, w_{0}\right)\right|}{k!l!}\right\} \leq \bar{N} \bar{M}\left|f^{(k, l)}\left(z_{0}, w_{0}\right)\right|
\end{aligned}
$$

Thus for each positive pair (r, s) there exist integers $N=N(r)$ and $M=M(s)$ and constants $\bar{N}=\bar{N}(r), \bar{M}=\bar{M}(s)$ such that for each pair of complex numbers (z, w) there exist $l=l\left(z_{0}\right) \leq N$ and $k=k(s) \leq M$ with

$$
M_{k, l}\left(f, z_{0}, w_{0}, r, s\right)=\bar{N} \bar{M}\left|f^{(k, l)}\left(z_{0}, w_{0}\right)\right|
$$

THEOREM 2.2. If the holomorphic bivariate $f(z, w)$ is of bounded index, then $g(z, w)=f(a z+$ $b, c w+d)$ is of bounded index for any complex numbers a, b, c and d.

Proof. Without loss of generality we can assume $a \neq 0$ and $c \neq 0$ otherwise we have a constant function. We can also assume $b=d=0$. Note the index of $f(z+b, w+d)$ at $\left(z_{0}, w_{0}\right)$ is the same as the index of $f(z, w)$ at $\left(z_{0}+b, w_{0}+d\right)$. Since $f(z, w)$ is of bounded index by Theorem 2.1 each ordered pair (r, s) with $r \geq 0$ and $s>0$ there exist integers $N=N(r)$ and $M=M(s)$ and constants $\bar{N}=\bar{N}(r)>0$ and $\bar{M}=\bar{M}(s)>0$ such that for complex number z and w there exist integers $k=k(z) \leq N$ and $l=l(w) \leq M$ with

$$
M_{k, l}(f, z, w, r, s)=\bar{N} \bar{M}\left|f^{(k, l)}\left(z_{0}, w_{0}\right)\right| .
$$

Now, for $r=|a| r_{0}$ and $s=|c| s_{0}$ with $z=a z_{0}$ and $w=c w_{0}$. Thus we obtain the following

$$
\begin{aligned}
M_{k, l}\left(g, z_{0}, w_{0}, r_{0}, s_{0}\right) & =\max _{\left|\delta-z_{0}\right|=r_{0},\left|\rho-w_{0}\right|=s_{0}}\left\{\left|g^{(k, l)}(\delta, \rho)\right|\right\} \\
& =\max _{\left|\delta-z_{0}\right|=r_{0},\left|\rho-w_{0}\right|=s_{0}}\left\{\left|a^{k} c^{l} f^{(k, l)}(\delta, \rho)\right|\right\} \\
& =|a|^{k}|c|^{l} \max _{\left|\bar{\delta}-a z_{0}\right|=|a| r_{0},\left|\bar{\rho}-c w_{0}\right|=|c| s_{0}}\left\{\left|f^{(k, l)}(\bar{\delta}, \bar{\rho})\right|\right\} \\
& =|a|^{k}|c|^{l} \max _{|\bar{\delta}-z|=r,|\bar{\rho}-w|=s}\left\{\left|f^{(k, l)}(\bar{\delta}, \bar{\rho})\right|\right\} \\
& =|a|^{k}|c|^{l} M_{k, l}(f, z, w, r, s)=|a|^{k}|c|^{l} \bar{N} \bar{M}\left|f^{(k, l)}(z, w)\right| \\
& =\bar{N} \bar{M}\left|a^{k} c^{l} f^{(k, l)}(z, w)\right|=\bar{N} \bar{M}\left|g^{(k, l)}(z, w)\right| .
\end{aligned}
$$

RICHARD F. PATTERSON - FATIH NURAY

Thus for each positive pair $\left(r_{0}, s_{0}\right)$ there exist integers $\bar{K}=\bar{K}\left(r_{0}\right)=N\left(|a| r_{0}\right)$ and $\bar{L}=\bar{L}\left(s_{0}\right)=$ $M\left(|c| s_{0}\right)$ and constants $\Gamma=\Gamma\left(r_{0}\right)=\bar{N}\left(|a| r_{0}\right)$ and $\bar{\Gamma}=\bar{\Gamma}\left(s_{0}\right)=\bar{M}\left(|c| s_{0}\right)$ such that for each complex numbers z_{0} and w_{0} there exist integers $m=m\left(z_{0}\right)=k\left(a z_{0}\right) \leq \bar{K}$ and $n=n\left(w_{0}\right)=$ $k\left(c w_{0}\right) \leq \bar{L}$ with

$$
M_{m, n}\left(g, z_{0}, w_{0}, r_{0}, s_{0}\right) \leq \bar{N} \bar{M}\left|g^{(k, l)}\left(z_{0}, w_{0}\right)\right| \leq \Gamma \bar{\Gamma}\left|g^{(m, n)}\left(z_{0}, w_{0}\right)\right|
$$

Thus by Theorem $2.1 g(z, w)$ is of bounded index.

REFERENCES

[1] FRICKE, G. H.: A characterization of functions of bounded index, Indian J. Math. 14 (1972), 207-212.
[2] HAMILTON, H. J.: Transformations of multiple sequences, Duke Math. J. 2 (1936), 29-60.
[3] HARDY, G. H.: Divergent Series, Oxford University Press, 1949.
[4] LEPSON, B.: Differential equations of infinite order, hyperdirichlet series and entire functions of bounded index. Lecture Notes, 1966, Summer Institute on Entire Functions, Univ. of California, La Jolla, California.
[5] PATTERSON, R. F.: Analogues of some fundamental theorems of summability theory, Int. J. Math. Math. Sci. 23, (2000), 1-9.
[6] PRINGSHEIM, A.: Zür Theorie der zweifach unendlichen Zahlenfolgen, Math. Ann. 53 (1900), 289-321.
[7] ROBISON, G. M.: Divergent double sequences and series, Amer. Math. Soc. Trans. 28 (1926), 50-73.

Received 27. 10. 2014
Accepted 17. 11. 2015

* Department of Mathematics and Statistics University of North Florida Jacksonville
Florida, 32224
U.S.A

E-mail: rpatters@unf.edu
** Deparment of Mathematics
AfyonKocatepe University
Afyonkarahisar TURKEY
E-mail: fnuray@aku.edu.tr

