Electronic Journal of Mathematical Analysis and Applications, Vol. 2(2) July 2014, pp. 67-72. ISSN: 2090-792X (online) http://fcag-egypt.com/Journals/EJMAA/

ON CONVERGENCE OF DOUBLE SEQUENCES OF FUNCTIONS

YURDAL SEVER AND ERDINÇ DÜNDAR

ABSTRACT. In this work, we deal with various kinds of convergence for double sequences of functions with values in \mathbb{R} . We introduce the concepts of uniformly convergent and uniformly Cauchy sequences for double sequences of functions and show the relation between them.

1. INTRODUCTION AND DEFINITIONS

Balcerzak et al. [2] discussed various kinds of statistical convergence and \mathcal{I} convergence for sequences of functions with values in \mathbb{R} or in a metric space. Gezer
and Karakuş [8] investigated \mathcal{I} -pointwise and uniform convergence and \mathcal{I}^* -pointwise
and uniform convergence of function sequences and then they examined the relation
between them. Gökhan et al. [9] introduced the notion of pointwise and uniform
statistical convergence of double sequences of real-valued functions. Also, some
useful results on double sequences and double sequences of functions may be found
in [3, 4, 5, 6, 7, 10, 12, 13, 15].

Throughout the paper \mathbb{N} denotes the set of all positive integers and \mathbb{R} the set of all real numbers.

Now, we recall the concept of convergence of the double sequences, the double sequences of functions and basic definitions and concepts. (See [1, 7, 9, 11, 13, 14]).

A double sequence $x = (x_{mn})_{m,n \in \mathbb{N}}$ of real numbers is said to be convergent to $L \in \mathbb{R}$ in the Pringsheim's sense (P-convergent) if for any $\varepsilon > 0$, there exists $N = N(\varepsilon) \in \mathbb{N}$ such that

$$x_{mn} - L| < \varepsilon,$$

whenever $m, n \geq N$. In this case we write

$$P - \lim_{m,n \to \infty} x_{mn} = L \text{ or } \lim_{m,n \to \infty} x_{mn} = L.$$

A double sequence $x = (x_{mn})_{m,n \in \mathbb{N}}$ is said to be Cauchy sequence if for every $\varepsilon > 0$ there exists $N = N(\varepsilon) \in \mathbb{N}$ such that

$$|x_{mn} - x_{jk}| < \varepsilon$$

for all $m, n, j, k \ge N$.

²⁰¹⁰ Mathematics Subject Classification. 40A30, 40B05.

Key words and phrases. Double Sequences; Convergence; Double Sequences of Functions. Submitted Jan. 11, 2014.

It is known that a double sequence (x_{mn}) of real numbers is a Cauchy sequence if and only if it is convergent.

A double sequence $x = (x_{mn})_{m,n \in \mathbb{N}}$ of real numbers is said to be bounded if there exists a positive real number M such that $|x_{mn}| < M$ for all $m, n \in \mathbb{N}$. That is,

$$||x||_{\infty} = \sup_{m,n} |x_{mn}| < \infty.$$

Now, we give the pointwise convergent and uniformly convergent for double sequences of functions.

A double sequence of functions $\{f_{mn}\}$ is said to be pointwise convergent to f on a set $S \subset \mathbb{R}$, if for each point $x \in S$ and for each $\varepsilon > 0$, there exists a positive integer $N = N(x, \varepsilon)$ such that

$$|f_{mn}(x) - f(x)| < \varepsilon$$

for all $m, n \ge N$. In this case we write

$$\lim_{m,n\to\infty} f_{mn}(x) = f(x) \text{ or } f_{mn} \to f, \text{ on } S.$$

Throughout the paper we take convergent instead of pointwise convergent.

A double sequence of functions $\{f_{mn}\}$ is said to be uniformly convergent to f on a set $S \subset \mathbb{R}$, if for each $\varepsilon > 0$, there exists a positive integer $N = N(\varepsilon)$ such that $m, n \geq N$ implies

$$|f_{mn}(x) - f(x)| < \varepsilon$$
, for all $x \in S$.

In this case we write

$$f_{mn} \rightrightarrows_S f.$$

2. Main Results

Theorem 2.1. Let $\{f_{mn}\}$ be a double sequence of functions and f be a function on $S \subset \mathbb{R}$. Then

$$f_{mn} \rightrightarrows_S f$$

if and only if

$$\lim_{m,n\to\infty}p_{mn}=0$$

where

$$p_{mn} = \sup_{x \in S} |f_{mn}(x) - f(x)|.$$

Proof. The proof is straightforward and so is omitted.

Definition 2.2. A double sequence of functions $\{f_{mn}\}$ on $S \subset \mathbb{R}$ is said to be uniformly Cauchy if for every $\varepsilon > 0$ there exists $N = N(\varepsilon) \in \mathbb{N}$ such that

$$|f_{mn}(x) - f_{jk}(x)| < \varepsilon, \text{ for all } x \in S$$

for all $m, n, j, k \geq N$.

Now, we give Cauchy criteria for uniform convergence.

Theorem 2.3. Let $\{f_{mn}\}$ be a sequence of functions on $S \subset \mathbb{R}$. $\{f_{mn}\}$ is uniformly convergent if and only if it is uniformly Cauchy on S.

Proof. Assume that $f_{mn} \rightrightarrows_S f$. Then, for each $\varepsilon > 0$, there exists a positive integer $N = N(\varepsilon)$ such that $m, n \ge N$ implies

$$|f_{mn}(x) - f(x)| < \frac{\varepsilon}{2}$$
, for all $x \in S$.

Therefore, we have

$$\begin{aligned} |f_{mn}(x) - f_{jk}(x)| &\leq |f_{mn}(x) - f(x)| + |f_{jk}(x) - f(x)| \\ &< \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon \end{aligned}$$

for all $x \in S$ and for all $m, n, j, k \geq N$. This provides that $\{f_{mn}\}$ is uniformly Cauchy on S.

Conversely assume that $\{f_{mn}\}$ is uniformly Cauchy on S. Then, for every $\varepsilon > 0$ there exists $N = N(\varepsilon) \in \mathbb{N}$ such that

$$|f_{mn}(x) - f_{jk}(x)| < \frac{\varepsilon}{2}, \text{ for all } x \in S$$
(2.1)

for all $m, n, j, k \ge N$. Since double sequence of numbers $\{f_{mn}(x)\}$ is Cauchy sequence for every $x \in S$, then

$$\lim_{m,n\to\infty} f_{mn}(x) = f(x).$$

Now, we show that $f_{mn} \rightrightarrows_S f$. By (2.1) fixing $m, n \ge N$ and applying limit operator for $j, k \to \infty$ $(\lim_{j,k\to\infty} f_{jk}(x) = f(x))$, we have

$$|f_{mn}(x) - f(x)| \le \frac{\varepsilon}{2} < \varepsilon$$
, for all $x \in S$

for all $m, n \geq N$. This provides that $f_{mn} \rightrightarrows_S f$.

Theorem 2.4. Let $\{f_{mn}\}$ be a double sequence of functions and f be a function on $S \subset \mathbb{R}$ and $f_{mn} \rightrightarrows_S f$. Assume that $x \in \overline{S}$ and

$$\lim_{t \to x} f_{mn}(t) = a_{mn}, \ m, n \in \mathbb{N}$$

$$(2.2)$$

for all $t \in S$. Then, double sequence (a_{mn}) is convergent and

$$\lim_{t \to x} f(t) = \lim_{m, n \to \infty} a_{mn} \tag{2.3}$$

for all $t \in S$. That is,

$$\lim_{m \to x} \lim_{m,n \to \infty} f_{mn}(t) = \lim_{m,n \to \infty} \lim_{t \to x} f_{mn}(t)$$

for all $t \in S$.

Proof. Let $f_{mn} \rightrightarrows_S f$. Then, for each $\varepsilon > 0$, there exists a positive integer $N = N(\varepsilon)$ such that for all $m, n, j, k \ge N$, we have

$$|f_{mn}(t) - f_{jk}(t)| < \varepsilon, \text{ for all } t \in S.$$

$$(2.4)$$

By (2.4) fixing $m, n, j, k \ge N$ and applying the limit operator for $t \to x \in \overline{S}$, by (2.2) we have

$$|a_{mn} - a_{jk}| \le \varepsilon.$$

Therefore, double sequence (a_{mn}) is Cauchy sequence and so (a_{mn}) is convergent, say $\lim_{m,n\to\infty} a_{mn} = a$. Since

$$f_{mn} \rightrightarrows_S f$$
 and $\lim_{m,n\to\infty} a_{mn} = a$,

then there exists $N^{'} = N^{'}(\varepsilon)$ such that for all $m, n \geq N^{'}$

$$|f_{mn}(t) - f_{jk}(t)| < \frac{\varepsilon}{3}$$
, for all $t \in S$

and we have

$$|a_{mn}-a| < \frac{\varepsilon}{3}.$$

For fixed $m, n \ge N'$, since

$$\lim_{t \to x} f_{mn}(t) = a_{mn},$$

then, there exists a punctured neighborhood $\tilde{U}(x)$ of x such that

$$|f_{mn}(t) - a_{mn}| < \frac{\varepsilon}{3},$$

for all $t \in \tilde{U}(x) \cap S$. Therefore, for every $m, n \ge N'$ and for every $t \in \tilde{U}(x) \cap S$, we have

$$\begin{aligned} |f_{mn}(t) - a| &\leq |f(t) - f_{mn}(t)| + |f_{mn}(t) - a_{mn}| + |a_{mn} - a| \\ &< \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3} = \varepsilon \end{aligned}$$

and so (2.3) is obtained.

Theorem 2.5. Let $\{f_{mn}\}$ be double sequence of continuous functions on $S \subset \mathbb{R}$. If $\{f_{mn}\}$ is uniformly convergent to f on $S \subset \mathbb{R}$, then f is continuous on $S \subset \mathbb{R}$. That is,

$$f_{mn} \in C(S), m, n \in \mathbb{N} \text{ and } f_{mn} \rightrightarrows_S f \Rightarrow f \in C(S), \ m, n \in \mathbb{N},$$

where C(S) denote the set of continuous functions on $S \subset \mathbb{R}$.

Proof. Let $x \in S$ be a arbitrary limit point of S. Since $f_{mn} \in C(S)$, then for all $m, n \in \mathbb{N}$

$$\lim_{t \to x} f_{mn}(t) = f_{mn}(x)$$

for all $t \in S$. By Theorem 2.4, $\{f_{mn}\}$ is convergent and for all $t \in S$,

$$\lim_{t \to x} f(t) = \lim_{m,n \to \infty} f_{mn}(x) = f(x), \ m, n \in \mathbb{N}.$$

Therefore, we have f is continuous at x. Since x is arbitrary point of S, so f is continuous on $S \subset \mathbb{R}$.

Theorem 2.6. Let S be a compact subset of \mathbb{R} , $\{f_{mn}\}$ be double sequence of continuous functions on S. Assume that $\{f_{mn}\}$ be monotonic decreasing on S, i.e.,

$$f_{(m+1),(n+1)}(x) \leq f_{mn}(x), \ (m, n = 1, 2, ...), \ for \ every \ x \in S,$$

f is continuous and

$$\lim_{m,n\to\infty}f_{mn}(x)=f(x)$$

on S. Then

 $f_{mn} \rightrightarrows_S f.$

EJMAA-2014/2(2)

Proof. Let $x \in S$, $\{f_{mn}\}$ be monotonic decreasing on S and

$$g_{mn}(x) = f_{mn}(x) - f(x).$$

Then, $g_{mn}(x)$ is continuous on S, $g_{mn}(x) \to 0$ $(x \in S)$, and $g_{mn}(x)$ is monotonic decreasing, for every $x \in S$. We show that $\{g_{mn}\}$ is uniformly convergent to 0 on S. Let $\varepsilon > 0$. Since for $x \in S$, $g_{mn}(x) \to 0$ there exist $m_x, n_x \in \mathbb{N}$ such that for every $x \in S$

$$0 \le g_{m_x n_x}(x) < \frac{\varepsilon}{2}.$$
(2.5)

Since $g_{m_x n_x}(t)$ is continuous at $x \in S$ and by 2.5 there exists an open neighborhood U(x) of x such that

$$0 \le g_{m_x n_x}(t) < \varepsilon$$

for every $t \in U(x) \cap S \equiv K(x)$. Since $\{g_{mn}(t)\}$ is monotonic decreasing for every $t \in K(x)$, we have

$$0 \le g_{mn}(t) \le \varepsilon$$

for all $m \ge m_x, n \ge n_x$. Since S is a compact subset of \mathbb{R} , there exists finite set $\{x_1, x_2, ..., x_i\}$ such that

$$S \subset K(x_1) \cup K(x_2) \cup \ldots \cup K(x_i).$$

We define

$$M = \max\{m_{x_1}, m_{x_2}, ..., m_{x_i}\},\$$

$$N = \max\{n_{x_1}, n_{x_2}, ..., n_{x_i}\}.$$

Then, for every $m \ge M$, $n \ge N$ we have

$$0 \le g_{mn}(t) < \varepsilon$$

for every $t \in S$ and so

 $g_{mn} \rightrightarrows_S 0.$

Acknowledgements

The author would like to express his thanks to Professor Feyzi Başar, Department of Mathematics, Fatih University İstanbul/Turkey and Professor Bilâl Altay, faculty of Education, İnönü University, Malatya/Turkey for his careful reading of an earlier version of this paper and the constructive comments which improved the presentation of the paper.

References

- B. Altay, F. Başar, Some new spaces of double sequences, J. Math. Anal. Appl. 309(1) (2005), 70-90.
- [2] M. Balcerzak, K. Dems, A. Komisarski, Statistical convergence and ideal convergence for sequences of functions, J. Math. Anal. Appl. 328 (2007), 715-729.
- [3] C. Çakan, B. Altay, Statistically boundedness and statistical core of double sequences, J. Math. Anal. Appl. 317 (2006), 690-697.
- [4] P. Das, P. Kostyrko, W. Wilczyński, P. Malik, I and I*-convergence of double sequences, Math. Slovaca, 58 (2008), No. 5, 605-620.
- [5] E. Dündar, B. Altay, \mathcal{I}_2 -convergence of double sequences of functions, (under communication).

- [6] E. Dündar, B. Altay \mathcal{I}_2 -uniform convergence of double sequences of functions, (under communication).
- [7] E. Dündar, B. Altay, On some properties of I₂-convergence and I₂-Cauchy of double sequences, Gen. Math. Notes, 7(1) (2011), 1–12.
- [8] F. Gezer, S. Karakuş, *I* and *I*^{*} convergent function sequences, Math. Commun. 10 (2005), 71-80.
- [9] A. Gökhan, M. Güngör and M. Et, Statistical convergence of double sequences of real-valued functions, Int. Math. Forum, 2(8) (2007), 365-374.
- [10] V. Kumar, On I and I*-convergence of double sequences, Math. Commun. 12 (2007), 171-181.
- [11] S.A. Mohiuddine, H. Sevli, M. Cancan, Statistical convergence of double sequences in fuzzy normed spaces, Filomat 26:4 (2012), 673–681.
- [12] F. Móricz, Statistical convergence of multiple sequences, Arch. Mat. 81(1) (2003), 82-89.
- [13] Mursaleen, O. H. H. Edely, Statistical convergence of double sequences, J. Math. Anal. Appl. 288 (2003), 223-231.
- [14] A. Pringsheim, Zur theorie der zweifach unendlichen Zahlenfolgen, Math. Ann. 53 (1900), 289–321.
- [15] B. Tripathy, B. C. Tripathy, On I-convergent double sequences, Soochow J. Math. 31 (2005), 549-560.

DEPARTMENT OF MATHEMATICS, AFYON KOCATEPE UNIVERSITY, AFYONKARAHISAR\TURKEY E-mail address: yurdalsever@hotmail.com, ysever@aku.edu.tr E-mail address: erdincdundar790gmail.com, edundar@aku.edu.tr