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In this paper, we introduce the notions of regularly (I
2
,I), (I∗

2
,I∗)-convergence and regularly (I

2
,I), (I∗

2
,I∗)-Cauchy

double sequence of fuzzy numbers. Also, we study some properties of these concepts.

1. Introduction, Notations, and Definitions

The concept of ordinary convergence of a sequence of fuzzy
numbers was firstly introduced by Matloka [1] and proved
some basic theorems for sequences of fuzzy numbers. Nanda
[2] studied the sequences of fuzzy numbers and showed that
the set of all convergent sequences of fuzzy numbers forms a
complete metric space. Recently, Nuray and Savaş [3] defined
the concepts of statistical convergence and statistical Cauchy
for sequence of fuzzy numbers. They proved that a sequence
of fuzzy numbers, is statistically convergent if and only if it
is statistically Cauchy. Nuray [4] introduced Lacunary sta-
tistical convergence of sequences of fuzzy numbers whereas
Savaş [5] studied some equivalent alternative conditions for a
sequence of fuzzy numbers to be statistically Cauchy. A lot of
developments have been made in this area after the works of
[6–8].

Throughout the paper N and R denote the set of all
positive integers and the set of all real numbers, respectively.
The idea ofI-convergence was introduced by Kostyrko et al.
[9] as a generalization of statistical convergence which is
based on the structure of the ideal I of subset of the set N.
Nuray and Ruckle [10] independently introduced the same
with another name generalized statistical convergence. Das
et al. [11] introduced the concept ofI-convergence of double
sequences in a metric space and studied some properties
of this convergent sequences of this type. Balcerzak et al.

[12] studied on statistical convergence and ideal convergence
for sequences of functions. Komisarski [13] discussed the
pointwiseI-convergence andI-convergence in measure of
sequences of functions. Mursaleen and Alotaibi investigated
the notion of ideal convergence in [14] for random 2-normed
space and construct some interesting examples. Mursaleen
and Mohiuddine defined and studied the concept of I-
convergence,I∗-convergence,I-limit points andI-cluster
points in probabilistic normed space, in [15]. Şahiner et al.
introduced and investigated I-convergence in 2-normed
spaces, and also defined and examined some new sequence
spaces using norm, in [16]. A lot of developments have been
made in this area after the works of [17–21].

V. Kumar and K. Kumar studied the concepts of I-
convergence, I∗-convergence, and I-Cauchy sequence for
sequences of fuzzy numbers, in [22]. Mursaleen et al. studied
the concept of ideal convergence and ideal Cauchy for double
sequences in intuitionistic fuzzy normed spaces, in [23].
Recently, Dündar and Talo have introduced the concepts
of I
2
-convergence, I∗

2
-convergence for double sequences

of fuzzy numbers and studied their some properties and
relations, in [24]. Quite recently, Dündar and Talo have
introduced the concepts of I

2
-Cauchy, I∗

2
-Cauchy double

sequences of fuzzy numbers, in [25].
In this paper, we introduce the notions of regularly

(I
2
,I), (I∗

2
,I∗)-convergence and regularly (I

2
,I),
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(I∗
2
,I∗)-Cauchy double sequence of fuzzy numbers. Also,

we study some properties of those sequences.
In a possible application we can say that if we choose

the statistical convergence of a special case of the ideal
convergence, the results in this paper can be obtained for
statistical convergence.

Now, we recall the concept of fuzzy numbers, conver-
gence, ideal convergence of the sequences and double
sequences (see [9, 11, 21, 24–30]).

A double sequence 𝑥 = (𝑥
𝑚𝑛

)
𝑚,𝑛∈N of real numbers is said

to be convergent to 𝐿 ∈ R in Pringsheim’s sense, if for any
𝜀 > 0 there exists 𝑁

𝜀
∈ N such that |𝑥

𝑚𝑛
− 𝐿| < 𝜀 whenever

𝑚, 𝑛 > 𝑁
𝜀
. In this case we write

𝑃 − lim
𝑚,𝑛→∞

𝑥
𝑚𝑛

= 𝐿 or lim
𝑚,𝑛→∞

𝑥
𝑚𝑛

= 𝐿. (1)

Let𝑋 ̸= 0. A classI of subsets of𝑋 is said to be an ideal in𝑋

provided that

(i) 0 ∈ I,
(ii) 𝐴, 𝐵 ∈ I implies 𝐴 ∪ 𝐵 ∈ I,
(iii) 𝐴 ∈ I, 𝐵 ⊂ 𝐴 implies 𝐵 ∈ I.

I is called a nontrivial ideal if 𝑋 ∉ I.
Let 𝑋 ̸= 0. A non-empty classF of subsets of 𝑋 is said to

be a filter in 𝑋 provided that

(i) 0 ∉ F,
(ii) 𝐴, 𝐵 ∈ F implies 𝐴 ∩ 𝐵 ∈ F,
(iii) 𝐴 ∈ F, 𝐴 ⊂ 𝐵 implies 𝐵 ∈ F.

IfI is a nontrivial ideal in 𝑋, 𝑋 ̸= 0, then the class

F (I) = {𝑀 ⊂ 𝑋 : (∃𝐴 ∈ I) (𝑀 = 𝑋 \ 𝐴)} (2)

is called a filter on 𝑋 associated withI.
A nontrivial ideal I in 𝑋 is called admissible if {𝑥} ∈ I

for each 𝑥 ∈ 𝑋.
Throughout the paper we takeI as a nontrivial admissi-

ble ideal in N.
Let I ⊂ 2

N be a nontrivial ideal, and let (𝑋, 𝜌) be a
metric space. A sequence (𝑥

𝑛
) of elements of 𝑋 is said to be

I-convergent to 𝐿 ∈ 𝑋, if for each 𝜀 > 0 we have𝐴(𝜀) = {𝑛 ∈

N : 𝜌(𝑥
𝑛
, 𝐿) ≥ 𝜀} ∈ I.

A sequence (𝑥
𝑛
) of elements of 𝑋 is said to be I∗-con-

vergent to 𝐿 ∈ 𝑋 if and only if there exists a set 𝑀 ∈ F(I)

(i.e., N \ 𝑀 ∈ I), 𝑀 = {𝑚
1
< 𝑚
2
< ⋅ ⋅ ⋅ < 𝑚

𝑘
< ⋅ ⋅ ⋅} such that

𝜌(𝑥
𝑚𝑘

, 𝐿) → 0, as 𝑘 → ∞.
Throughout the paper we takeI

2
as a nontrivial admis-

sible ideal in N × N.
A nontrivial idealI

2
⊂ 2

N×N is called strongly admissible
if {𝑖} ×N and N × {𝑖} belong toI

2
for each 𝑖 ∈ N. It is evident

that a strongly admissible ideal is also admissible.
Let I0

2
= {𝐴 ⊂ N × N : (∃𝑚(𝐴) ∈ N) (𝑖, 𝑗 ≥ 𝑚(𝐴) ⇒

(𝑖, 𝑗) ∉ 𝐴)}. ThenI0
2
is a nontrivial strongly admissible ideal

and clearly an ideal I
2
is strongly admissible if and only if

I0
2
⊂ I
2
.

Let (𝑋, 𝜌) be a linear metric space, and letI
2
⊂ 2

N×N be
a strongly admissible ideal. A double sequence 𝑥 = (𝑥

𝑚𝑛
) in

𝑋 is said to be I
2
-convergent to 𝐿 ∈ 𝑋, if for any 𝜀 > 0 we

have 𝐴(𝜀) = {(𝑚, 𝑛) ∈ N × N : 𝜌(𝑥
𝑚𝑛

, 𝐿) ≥ 𝜀} ∈ I
2
and is

writtenI
2
− lim
𝑚,𝑛→∞

𝑥
𝑚𝑛

= 𝐿.
If I
2

⊂ 2
N×N is a strongly admissible ideal, then usual

convergence impliesI
2
-convergence.

Let (𝑋, 𝜌) be a linear metric space, and letI
2
⊂ 2

N×N be
a strongly admissible ideal. A double sequence 𝑥 = (𝑥

𝑚𝑛
) of

elements of 𝑋 is said to be I∗
2
-convergent to 𝐿 ∈ 𝑋, if and

only if there exists a set 𝑀 ∈ F(I
2
) (i.e., N × N \ 𝑀 ∈ I

2
)

such that lim
𝑚,𝑛→∞

𝑥
𝑚𝑛

= 𝐿, for (𝑚, 𝑛) ∈ 𝑀 and is written
I∗
2
− lim
𝑚,𝑛→∞

𝑥
𝑚𝑛

= 𝐿.
Let (𝑋, 𝜌) be a linear metric space, and letI

2
⊂ 2

N×N be
a strongly admissible ideal. A double sequence 𝑥 = (𝑥

𝑚𝑛
) of

elements of𝑋 is said to beI
2
-Cauchy, if for every 𝜀 > 0 there

exist 𝑠 = 𝑠(𝜀), 𝑡 = 𝑡(𝜀) ∈ N such that 𝐴(𝜀) = {(𝑚, 𝑛) ∈ N × N :

𝜌(𝑥
𝑚𝑛

, 𝑥
𝑠𝑡
) ≥ 𝜀} ∈ I

2
.

Let I
2
be an ideal of N × N and I be an ideal of N,

then a double sequence 𝑥 = (𝑥
𝑚𝑛

) in C, which is the set of
complex numbers, is said to be regularly (I

2
,I)-convergent

(r (I
2
,I)-convergent), if it isI

2
-convergent in Pringsheim’s

sense and for every 𝜀 > 0, the following statements hold:

{𝑚 ∈ N :
𝑥𝑚𝑛 − 𝐿

𝑛

 ≥ 𝜀} ∈ I (3)

for some 𝐿
𝑛
∈ C, for each 𝑛 ∈ N and

{𝑛 ∈ N :
𝑥𝑚𝑛 − 𝐾

𝑚

 ≥ 𝜀} ∈ I (4)

for some 𝐾
𝑚

∈ C, for each 𝑚 ∈ N.
We say that an admissible ideal I ⊂ 2

N satisfies the
property (AP), if for every countable family of mutually
disjoint sets {𝐴

1
, 𝐴
2
, . . .} belonging to I, there exists a

countable family of sets {𝐵
1
, 𝐵
2
, . . .} such that 𝐴

𝑗
△ 𝐵
𝑗
is a

finite set for 𝑗 ∈ N and 𝐵 = ⋃
∞

𝑗=1
𝐵
𝑗
∈ I. (hence 𝐵

𝑗
∈ I for

each 𝑗 ∈ N).
We say that an admissible ideal I

2
⊂ 2

N×N satisfies the
property (AP2), if for every countable family of mutually
disjoint sets {𝐴

1
, 𝐴
2
, . . .} belonging to I

2
, there exists a

countable family of sets {𝐵
1
, 𝐵
2
, . . .} such that 𝐴

𝑗
△ 𝐵
𝑗
∈ I0
2
,

that is, 𝐴
𝑗
△ 𝐵
𝑗
is included in the finite union of rows and

columns in N × N for each 𝑗 ∈ N and 𝐵 = ⋃
∞

𝑗=1
𝐵
𝑗

∈ I
2

(hence 𝐵
𝑗
∈ I
2
for each 𝑗 ∈ N).

A fuzzy number is a fuzzy set on the real axis, that is, a
mapping 𝑢 : R → [0, 1] which satisfies the following four
conditions.

(i) 𝑢 is normal, that is, there exists an 𝑥
0

∈ R such that
𝑢(𝑥
0
) = 1.

(ii) 𝑢 is fuzzy convex, that is, 𝑢[𝜆𝑥 + (1 − 𝜆)𝑦] ≥

min{𝑢(𝑥), 𝑢(𝑦)} for all 𝑥, 𝑦 ∈ R and for all 𝜆 ∈ [0, 1].

(iii) 𝑢 is upper semicontinuous.

(iv) The set [𝑢]
0

:= {𝑥 ∈ R : 𝑢(𝑥) > 0} is compact, (cf.
Zadeh [31]), where {𝑥 ∈ R : 𝑢(𝑥) > 0} denotes the
closure of the set {𝑥 ∈ R : 𝑢(𝑥) > 0} in the usual
topology of R.
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We denote the set of all fuzzy numbers onR by 𝐸
1 and called

it as the space of fuzzy numbers. 𝛼-level set [𝑢]
𝛼
of 𝑢 ∈ 𝐸

1 is
defined by

[𝑢]
𝛼
:=

{

{

{

{𝑡 ∈ R : 𝑥 (𝑡) ≥ 𝛼} , (0 < 𝛼 ≤ 1) ,

{𝑡 ∈ R : 𝑥(𝑡) > 𝛼}, (𝛼 = 0) .
(5)

The set [𝑢]
𝛼
is closed, bounded, and nonempty interval for

each 𝛼 ∈ [0, 1] which is defined by [𝑢]
𝛼

:= [𝑢
−
(𝛼), 𝑢
+
(𝛼)]. R

can be embedded in 𝐸
1, since each 𝑟 ∈ R can be regarded as

a fuzzy number 𝑟 defined by

𝑟 (𝑥) := {
1, (𝑥 = 𝑟) ,

0, (𝑥 ̸= 𝑟) .
(6)

Theorem 1 (see [27]). Let [𝑢]
𝛼

= [𝑢
−
(𝛼), 𝑢
+
(𝛼)] for 𝑢 ∈ 𝐸

1

and for each 𝛼 ∈ [0, 1]. Then the following statements hold.

(i) 𝑢
− is a bounded and nondecreasing left continuous

function on (0, 1].
(ii) 𝑢
+ is a bounded and nonincreasing left continuous

function on (0, 1].
(iii) The functions 𝑢

− and 𝑢
+ are right continuous at the

point 𝛼 = 0.
(iv) 𝑢

−
(1) ≤ 𝑢

+
(1).

Conversely, if the pair of functions 𝛼 and 𝛽 satisfies the
conditions (i)–(iv), then there exists a unique 𝑢 ∈ 𝐸

1 such that
[𝑢]
𝛼
:= [𝑢
−
(𝛼), 𝑢
+
(𝛼)] for each 𝛼 ∈ [0, 1]. The fuzzy number 𝑢

corresponding to the pair of functions 𝑢− and 𝑢
+ is defined by

𝑢 : R → [0, 1], 𝑢(𝑥) := sup{𝛼 : 𝑢
−
(𝛼) ≤ 𝑥 ≤ 𝑢

+
(𝛼)}.

Let 𝑢, V, 𝑤 ∈ 𝐸
1 and 𝑘 ∈ R. Then the operations addition,

scalar multiplication, and product are defined on 𝐸
1 by

𝑢 + V = 𝑤 ⇐⇒ [𝑤]𝛼 = [𝑢]𝛼 + [V]𝛼, ∀𝛼 ∈ [0, 1]

⇐⇒ 𝑤
−
(𝛼) = 𝑢

−
(𝛼) + V

−
(𝛼) ,

𝑤
+
(𝛼) = 𝑢

+
(𝛼) + V

+
(𝛼) ,

[𝑘𝑢]𝛼 = 𝑘[𝑢]𝛼, ∀𝛼 ∈ [0, 1] ,

𝑢V = 𝑤 ⇐⇒ [𝑤]𝛼 = [𝑢]𝛼[V]𝛼, ∀𝛼 ∈ [0, 1] ,

(7)

where it is immediate that

𝑤
−
(𝛼) = min {𝑢

−
(𝛼) V
−
(𝛼) , 𝑢

−
(𝛼) V
+
(𝛼) , 𝑢

+
(𝛼) V
−
(𝛼) ,

𝑢
+
(𝛼) V
+
(𝛼)} ,

𝑤
+
(𝛼) = max {𝑢

−
(𝛼) V
−
(𝛼) , 𝑢

−
(𝛼) V
+
(𝛼) , 𝑢

+
(𝛼) V
−
(𝛼) ,

𝑢
+
(𝛼) V
+
(𝛼)} ,

(8)

for all 𝛼 ∈ [0, 1].

Let 𝑊 be the set of all closed bounded intervals 𝐴 of real
numbers with endpoints𝐴 and𝐴, that is,𝐴 := [𝐴, 𝐴]. Define
the relation 𝑑 on 𝑊 by

𝑑 (𝐴, 𝐵) := max {
𝐴 − 𝐵

 ,

𝐴 − 𝐵


} . (9)

Then it can easily be observed that 𝑑 is a metric on 𝑊 and
(𝑊, 𝑑) is a complete metric space, (cf. Nanda [2]). Now, we
may define the metric 𝐷 on 𝐸

1 by means of the Hausdorff
metric 𝑑 as

𝐷 (𝑢, V) := sup
𝛼∈[0,1]

𝑑 ([𝑢]𝛼, [V]𝛼)

:= sup
𝛼∈[0,1]

max {
𝑢
−
(𝛼) − V

−
(𝛼)

 ,
𝑢
+
(𝛼) − V

+
(𝛼)

} .

(10)

One can see that

𝐷(𝑢, 0) = sup
𝛼∈[0,1]

max {
𝑢
−
(𝛼)

 ,
𝑢
+
(𝛼)

}

= max {
𝑢
−
(0)

 ,
𝑢
+
(0)

} .

(11)

The partial ordering relation ⪯ on 𝐸
1 is defined as follows:

𝑢 ⪯ V ⇐⇒ 𝑢
−
(𝛼) ≤ V

−
(𝛼) , 𝑢

+
(𝛼) ≤ V

+
(𝛼) ∀𝛼 ∈ [0, 1] .

(12)

Now, we may give the following.

Proposition 2 (see [6]). Let 𝑢, V, 𝑤, 𝑧 ∈ 𝐸
1 and 𝑘 ∈ R. Then,

the following statements hold.

(i) (𝐸
1
, 𝐷) is a complete metric space.

(ii) 𝐷(𝑘𝑢, 𝑘V) = |𝑘|𝐷(𝑢, V).
(iii) 𝐷(𝑢 + V, 𝑤 + V) = 𝐷(𝑢, 𝑤).
(iv) 𝐷(𝑢 + V, 𝑤 + 𝑧) ≤ 𝐷(𝑢, 𝑤) + 𝐷(V, 𝑧).
(v) |𝐷(𝑢, 0) − 𝐷(V, 0)| ≤ 𝐷(𝑢, V) ≤ 𝐷(𝑢, 0) + 𝐷(V, 0).

FollowingMatloka [1], we give some definitions concern-
ing the sequences of fuzzy numbers which are needed in the
text.

A sequence 𝑢 = (𝑢
𝑘
) of fuzzy numbers is a function 𝑢 from

the set N into the set 𝐸
1. The fuzzy number 𝑢

𝑘
denotes the

value of the function at 𝑘 ∈ N and is called as the general term
of the sequence. By 𝑤(𝐹), we denote the set of all sequences
of fuzzy numbers

A sequence (𝑢
𝑛
) ∈ 𝑤(𝐹) is called convergent with limit

𝑢 ∈ 𝐸
1, if for every 𝜀 > 0 there exists an 𝑛

0
= 𝑛
0
(𝜀) ∈ N such

that 𝐷(𝑢
𝑛
, 𝑢) < 𝜀 for all 𝑛 ≥ 𝑛

0
.

A double sequence 𝑢 = (𝑢
𝑛𝑘
) of fuzzy real numbers is

defined by a function 𝑢 from the set N × N into the set 𝐸
1.

The fuzzy number 𝑢
𝑛𝑘

denotes the value of the function at
(𝑛, 𝑘) ∈ N × N.

A double sequence 𝑢 = (𝑢
𝑚𝑛

) of fuzzy numbers is said to
be convergent in the Pringsheim’s sense or P-convergent, if for
every 𝜀 > 0 there exists 𝑘 ∈ N such that 𝐷(𝑢

𝑚𝑛
, 𝑢
0
) < 𝜀 for all

𝑚, 𝑛 ≥ 𝑘 and is denoted by 𝑃− lim
𝑚,𝑛→∞

𝑢
𝑚𝑛

= 𝑢
0
. The fuzzy

number 𝑢
0
is called the Pringsheim limit of 𝑢.
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LetI
2
⊂ 2

N×N be a strongly admissible ideal.

(i) A double sequence 𝑢 = (𝑢
𝑚𝑛

) of fuzzy numbers is said
to be I

2
-convergent to a fuzzy number 𝑢

0
if for any

𝜀 > 0 we have 𝐴(𝜀) = {(𝑚, 𝑛) ∈ N × N : 𝐷(𝑢
𝑚𝑛

, 𝑢
0
) ≥

𝜀} ∈ I
2
and is writtenI

2
− lim
𝑚,𝑛→∞

𝑢
𝑚𝑛

= 𝑢
0
.

(ii) A double sequence 𝑢 = (𝑢
𝑚𝑛

) of fuzzy numbers is said
to be I∗

2
-convergent to 𝑢

0
∈ 𝐸
1 if there exists 𝑀 ∈

F(I
2
) (i.e., 𝐻 = N × N \ 𝑀 ∈ I

2
) such that

lim
𝑚,𝑛→∞

(𝑚,𝑛)∈𝑀

𝑢
𝑚𝑛

= 𝑢
0 (13)

and is writtenI∗
2
− lim
𝑚,𝑛→∞

𝑢
𝑚𝑛

= 𝑢
0
.

(iii) A double sequence 𝑢 = (𝑢
𝑚𝑛

) of fuzzy numbers is said
to be I

2
-Cauchy, if for each 𝜀 > 0, there exist 𝑠 =

𝑠(𝜀), 𝑡 = 𝑡(𝜀) ∈ N such that 𝐴(𝜀) = {(𝑚, 𝑛) ∈ N × N :

𝐷(𝑢
𝑚𝑛

, 𝑢
𝑠𝑡
) ≥ 𝜀} ∈ I

2
.

(iv) A double sequence 𝑢 = (𝑢
𝑚𝑛

) of fuzzy numbers is said
to beI∗

2
-Cauchy if there exists a set𝑀 ∈ F(I

2
) (i.e.,

𝐻 = N×N\𝑀 ∈ I
2
) such that for every 𝜀 > 0 and for

(𝑚, 𝑛), (𝑠, 𝑡) ∈ 𝑀,𝑚, 𝑛, 𝑠, 𝑡 > 𝑘
0
= 𝑘
0
(𝜀),𝐷(𝑢

𝑚𝑛
, 𝑢
𝑠𝑡
) <

𝜀, that is,

lim
𝑚,𝑛,𝑠,𝑡→∞

(𝑚,𝑛),(𝑠,𝑡)∈𝑀

𝐷(𝑢
𝑚𝑛

, 𝑢
𝑠𝑡
) = 0.

(14)

Now, we begin with quoting the following five lemmas
due toDündar andTalo [24, 25]which are needed throughout
the paper.

Lemma 3 (see [24, Theorem 3.3]). Let I
2

⊂ 2
N×N be a

strongly admissible ideal, let 𝑢 = (𝑢
𝑚𝑛

) be a double sequence
of fuzzy numbers, and let 𝑢

0
be a fuzzy number. Then, 𝑃 −

lim
𝑚,𝑛→∞

𝑢
𝑚𝑛

= 𝑢
0
impliesI

2
− lim
𝑚,𝑛→∞

𝑢
𝑚𝑛

= 𝑢
0
.

Lemma 4 (see [24, Theorem 4.2]). Let I
2

⊂ 2
N×N be a

strongly admissible ideal, let 𝑢 = (𝑢
𝑚𝑛

) be a double sequence of
fuzzy numbers, and let 𝑢

0
∈ 𝐸
1. Then,I∗

2
− lim
𝑚,𝑛→∞

𝑢
𝑚𝑛

=

𝑢
0
impliesI

2
− lim
𝑚,𝑛→∞

𝑢
𝑚𝑛

= 𝑢
0
.

Lemma 5 (see [24, Theorem 4.4]). Let I
2

⊂ 2
N×N be a

strongly admissible ideal with property (AP2), let 𝑢 = (𝑢
𝑚𝑛

)

be a double sequence of fuzzy numbers, and let 𝑢
0
be a fuzzy

real number. Then, I
2
− lim
𝑚,𝑛→∞

𝑢
𝑚𝑛

= 𝑢
0
implies I∗

2
−

lim
𝑚,𝑛→∞

𝑢
𝑚𝑛

= 𝑢
0
.

Lemma 6 (see [25, Theorem 3.2]). Let I
2

⊂ 2
N×N be a

strongly admissible ideal. A double sequence 𝑢 = (𝑢
𝑚𝑛

) of
fuzzy numbers isI

2
-convergent if and only if it isI

2
-Cauchy

sequence.

Lemma7 (see [25,Theorem 3.4]). LetI
2
⊂ 2

N×N be a strong-
ly admissible ideal. If a double sequence 𝑢 = (𝑢

𝑚𝑛
) of fuzzy

numbers is anI∗
2
-Cauchy sequence, then it isI

2
-Cauchy.

2. Main Results

In this section, we study certain properties of regular conver-
gence, regularly (I

2
,I)-convergence and regularly (I

2
,I)-

Cauchy double sequences of fuzzy numbers.

Definition 8. A double sequence (𝑢
𝑚𝑛

) of fuzzy numbers
is said to be regularly convergent, if it is convergent in
Pringsheim’s sense and the limits

lim
𝑚→∞

𝑢
𝑚𝑛

, (𝑛 ∈ N) , lim
𝑛→∞

𝑢
𝑚𝑛

, (𝑚 ∈ N) , (15)

exist for each fixed 𝑛 ∈ N and𝑚 ∈ N, respectively. Note that if
(𝑢
𝑚𝑛

) is regularly convergent to a fuzzy number 𝑢
0
, then the

limits

lim
𝑛→∞

lim
𝑚→∞

𝑢
𝑚𝑛

, lim
𝑚→∞

lim
𝑛→∞

𝑢
𝑚𝑛 (16)

exist and are equal to 𝑢
0
. In this case we write

𝑟 − lim
𝑚,𝑛→∞

𝑢
𝑚𝑛

= 𝑢
0

or 𝑢
𝑚𝑛

𝑟

→ 𝑢
0

as 𝑚, 𝑛 → ∞.

(17)

Definition 9. Let I
2

⊂ 2
N×N be a strongly admissible ideal,

and let I ⊂ 2
N be an admissible ideal. A double sequence

(𝑢
𝑚𝑛

) of fuzzy numbers is said to be regularly (I
2
,I)-

convergent (𝑟(I
2
,I)-convergent), if it is I

2
-convergent in

Pringsheim’s sense and for every 𝜀 > 0, the following
statements hold:

{𝑚 ∈ N : 𝐷 (𝑢
𝑚𝑛

, V
𝑛
) ≥ 𝜀} ∈ I (18)

for some fuzzy numbers V
𝑛
, for each 𝑛 ∈ N and

{𝑛 ∈ N : 𝐷 (𝑢
𝑚𝑛

, 𝑤
𝑚
) ≥ 𝜀} ∈ I (19)

for some fuzzy numbers 𝑤
𝑚
, for each 𝑚 ∈ N.

In the case (𝑢
𝑚𝑛

) is regularly (I
2
,I)-convergent

(𝑟(I
2
,I)-convergent) to a fuzzy number 𝑢

0
, then the limits

I − lim
𝑛→∞

lim
𝑚→∞

𝑢
𝑚𝑛

and I − lim
𝑚→∞

lim
𝑛→∞

𝑢
𝑚𝑛

exist and are equal to 𝑢
0
.

Theorem 10. Let I
2
be a strongly admissible ideal of N × N,

and let I be an admissible ideal of N. If a double sequence
(𝑢
𝑚𝑛

) of fuzzy numbers is regularly convergent, then it is
𝑟(I
2
,I)-convergent.

Proof. Let (𝑢
𝑚𝑛

) be regularly convergent. Then (𝑢
𝑚𝑛

) is con-
vergent in Pringsheim’s sense and the limits lim

𝑚→∞
𝑢
𝑚𝑛

(𝑛 ∈

N) and lim
𝑛→∞

𝑢
𝑚𝑛

(𝑚 ∈ N) exist. By Lemma 3, (𝑢
𝑚𝑛

) is
I
2
-convergent. Also, for 𝜀 > 0, there exist 𝑚 = 𝑚

0
(𝜀) and

𝑛 = 𝑛
0
(𝜀) such that

𝐷(𝑢
𝑚𝑛

, V
𝑛
) < 𝜀 (20)

for some fuzzy numbers V
𝑛
and each fixed 𝑛 ∈ N for every

𝑚 ≥ 𝑚
0
and

𝐷(𝑢
𝑚𝑛

, 𝑤
𝑚
) < 𝜀 (21)
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for some fuzzy numbers 𝑤
𝑚
and each fixed 𝑚 ∈ N for every

𝑛 ≥ 𝑛
0
.Then, sinceI is admissible ideal so for 𝜀 > 0, we have

{𝑚 ∈ N : 𝐷 (𝑢
𝑚𝑛

, V
𝑛
) ≥ 𝜀} = {1, 2, . . . , 𝑚

0
− 1} ∈ I,

{𝑛 ∈ N : 𝐷 (𝑢
𝑚𝑛

, 𝑤
𝑚
) ≥ 𝜀} = {1, 2, . . . , 𝑛

0
− 1} ∈ I.

(22)

Hence, (𝑢
𝑚𝑛

) is 𝑟(I
2
,I)-convergent.

Definition 11. Let I
2
be a strongly admissible ideal of N ×

N, and letI be an admissible ideal of N. A double sequence
(𝑢
𝑚𝑛

) of fuzzy numbers is said to be 𝑟(I∗
2
,I∗)-convergent, if

there exist the sets𝑀 ∈ F(I
2
) (i.e., N ×N \ 𝑀 ∈ I

2
),𝑀
1
∈

F(I), and 𝑀
2
∈ F(I) (i.e., N \ 𝑀

1
∈ I and N \ 𝑀

2
∈ I)

such that the limits
lim
𝑚,𝑛→∞

(𝑚,𝑛)∈𝑀

𝑢
𝑚𝑛

, lim
𝑚→∞

𝑚∈𝑀1

𝑢
𝑚𝑛

, lim
𝑛→∞

𝑛∈𝑀2

𝑢
𝑚𝑛 (23)

exist for each fixed 𝑛 ∈ N and 𝑚 ∈ N, respectively.

Theorem 12. Let I
2
be a strongly admissible ideal of N × N,

and let I be an admissible ideal of N. If a double sequence
(𝑢
𝑚𝑛

) of fuzzy numbers is 𝑟(I∗
2
,I∗)-convergent, then it is

𝑟(I
2
,I)-convergent.

Proof. Let (𝑢
𝑚𝑛

) be 𝑟(I∗
2
,I∗)-convergent. Then, it is I∗

2
-

convergent and so, by Lemma 4, it is I
2
-convergent. Also,

there exist the sets 𝑀
1
,𝑀
2
∈ F(I) such that

(∀𝜀 > 0) (∃𝑚
0
∈ N) (∀𝑚 ≥ 𝑚

0
) (𝑚 ∈ 𝑀

1
)

𝐷 (𝑢
𝑚𝑛

, V
𝑛
) < 𝜀, (𝑛 ∈ N)

(24)

for some fuzzy numbers V
𝑛
and

(∀𝜀 > 0) (∃𝑛
0
∈ N) (∀𝑛 ≥ 𝑛

0
) (𝑛 ∈ 𝑀

2
)

𝐷 (𝑢
𝑚𝑛

, 𝑤
𝑚
) < 𝜀, (𝑚 ∈ N)

(25)

for some fuzzy numbers 𝑤
𝑚
. Hence, we have

𝐴 (𝜀)={𝑚 ∈ N : 𝐷 (𝑢
𝑚𝑛

, V
𝑛
) ≥ 𝜀} ⊂ 𝐻

1
∪ {1, 2, . . . , 𝑚

0
−1} ,

(𝑛 ∈ N) ,

𝐵 (𝜀)={𝑛 ∈ N : 𝐷 (𝑢
𝑚𝑛

, 𝑤
𝑚
) ≥ 𝜀} ⊂ 𝐻

2
∪ {1, 2, . . . , 𝑛

0
−1} ,

(𝑚 ∈ N) ,

(26)

for 𝐻
1
, 𝐻
2
∈ I. SinceI is admissible ideal we get

𝐻
1
∪ {1, 2, . . . , (𝑚

0
− 1)} ∈ I,

𝐻
2
∪ {1, 2, . . . , 𝑛

0
− 1} ∈ I,

(27)

and therefore 𝐴(𝜀), 𝐵(𝜀) ∈ I. This shows that the double
sequence (𝑢

𝑚𝑛
) is 𝑟(I

2
,I)-convergent.

Theorem 13. Let I
2

⊂ 2
N×N be a strongly admissible ideal

with property (AP2), and let I ⊂ 2
N be an admissible

ideal with property (AP). If a double sequence (𝑢
𝑚𝑛

) of fuzzy
numbers is 𝑟(I

2
,I)-convergent, then (𝑢

𝑚𝑛
) is 𝑟(I∗

2
,I∗)-

convergent.

Proof. Let a double sequence (𝑢
𝑚𝑛

) of fuzzy numbers be
𝑟(I
2
,I)-convergent. Then (𝑢

𝑚𝑛
) is I

2
-convergent and so

(𝑢
𝑚𝑛

) is I∗
2
-convergent, by Lemma 5. Also, for every 𝜀 > 0

we have

𝐴 (𝜀) = {𝑚 ∈ N : 𝐷 (𝑢
𝑚𝑛

, V
𝑛
) ≥ 𝜀} ∈ I (28)

for some fuzzy numbers V
𝑛
, for each 𝑛 ∈ N and

𝐶 (𝜀) = {𝑛 ∈ N : 𝐷 (𝑢
𝑚𝑛

, 𝑤
𝑚
) ≥ 𝜀} ∈ I (29)

for some fuzzy numbers 𝑤
𝑚
, for each 𝑚 ∈ N.

Now put

𝐴
1
= {𝑚 ∈ N : 𝐷 (𝑢

𝑚𝑛
, V
𝑛
) ≥ 1} ,

𝐴
𝑘
= {𝑚 ∈ N :

1

𝑘
≤ 𝐷 (𝑢

𝑚𝑛
, V
𝑛
) <

1

𝑘 − 1
}

(30)

for 𝑘 ≥ 2, for some fuzzy numbers V
𝑛
and for each 𝑛 ∈ N.

It is clear that 𝐴
𝑖
∩ 𝐴
𝑗

= 0 for 𝑖 ̸= 𝑗 and 𝐴
𝑖
∈ I for each

𝑖 ∈ N. By the property (𝐴𝑃) there is a countable family of sets
{𝐵
1
, 𝐵
2
, . . .} in I such that 𝐴

𝑗
△ 𝐵
𝑗
is a finite set for each

𝑗 ∈ N and 𝐵 = ⋃
∞

𝑗=1
𝐵
𝑗
∈ I.

We prove that

lim
𝑚→∞

𝑚∈𝑀

𝑢
𝑚𝑛

= V
𝑛
for some fuzzy numbers V

𝑛
and for each 𝑛 ∈ N

(31)

for 𝑀 = N \ 𝐵 ∈ F(I). Let 𝛿 > 0 be given. Choose 𝑘 ∈ N

such that 1/𝑘 < 𝛿. Then, we have

{𝑚 ∈ N : 𝐷 (𝑢
𝑚𝑛

, V
𝑛
) ≥ 𝛿}

⊂

𝑘

⋃

𝑗=1

𝐴
𝑗
for some fuzzy numbers V

𝑛
and for each 𝑛 ∈ N.

(32)

Since 𝐴
𝑗
△ 𝐵
𝑗
is a finite set for 𝑗 ∈ {1, 2, . . . , 𝑘}, there exists

𝑚
0
∈ N such that

(

𝑘

⋃

𝑗=1

𝐵
𝑗
) ∩ {𝑚 : 𝑚 ≥ 𝑚

0
} = (

𝑘

⋃

𝑗=1

𝐴
𝑗
) ∩ {𝑚 : 𝑚 ≥ 𝑚

0
} .

(33)

If 𝑚 ≥ 𝑚
0
and 𝑚 ∉ 𝐵 then

𝑚 ∉

𝑘

⋃

𝑗=1

𝐵
𝑗
and so 𝑚 ∉

𝑘

⋃

𝑗=1

𝐴
𝑗
. (34)

Thus, we have 𝐷(𝑢
𝑚𝑛

, V
𝑛
) < 1/𝑘 < 𝛿 for some fuzzy numbers

V
𝑛
and for each 𝑛 ∈ N. This implies that

lim
𝑚→∞

𝑚∈𝑀

𝑢
𝑚𝑛

(𝑥) = V
𝑛
. (35)
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Hence, we have

I
∗
− lim
𝑚→∞

𝑢
𝑚𝑛

= V
𝑛 (36)

for some fuzzy numbers V
𝑛
and for each 𝑛 ∈ N.

Similarly, for the set 𝐶(𝜀) = {𝑛 ∈ N : 𝐷(𝑢
𝑚𝑛

, 𝑤
𝑚
) ≥ 𝜀} ∈

I, we have

I
∗
− lim
𝑛→∞

𝑢
𝑚𝑛

= 𝑤
𝑚 (37)

for some fuzzy numbers 𝑤
𝑚
and for each 𝑚 ∈ N. Hence,

a double sequence (𝑢
𝑚𝑛

) of fuzzy numbers is 𝑟(I∗
2
,I∗)-

convergent.

Now, we give the definitions of 𝑟(I
2
,I)-Cauchy seq-

uence and 𝑟(I∗
2
,I∗)-Cauchy sequence.

Definition 14. Let I
2
be a strongly admissible ideal of

N × N, and let I be an admissible ideal of N. A double
sequence (𝑢

𝑚𝑛
) of fuzzy numbers is said to be regularly

(I
2
,I)-Cauchy (𝑟(I

2
,I)-Cauchy), if it is I

2
-Cauchy in

Pringsheim’s sense and for every 𝜀 > 0 there exist 𝑘
𝑛
= 𝑘
𝑛
(𝜀) ∈

N and 𝑙
𝑚

= 𝑙
𝑚
(𝜀) ∈ N such that the following statements hold:

𝐴
1
(𝜀) = {𝑚 ∈ N : 𝐷 (𝑢

𝑚𝑛
, 𝑢
𝑘𝑛𝑛

) ≥ 𝜀} ∈ I, (𝑛 ∈ N) ,

𝐴
2
(𝜀) = {𝑛 ∈ N : 𝐷 (𝑢

𝑚𝑛
, 𝑢
𝑚𝑙𝑚

) ≥ 𝜀} ∈ I, (𝑚 ∈ N) .

(38)

A double sequence (𝑢
𝑚𝑛

) is said to be regularly (I∗
2
,I∗)-

Cauchy (𝑟(I∗
2
,I∗)-Cauchy), if there exist the sets 𝑀 ∈

F(I
2
),𝑀
1
∈ F(I), and𝑀

2
∈ F(I) (i.e.,N×N \𝑀 ∈ I

2
,

N \𝑀
1
∈ I, and N \𝑀

2
∈ I) and for every 𝜀 > 0 there exist

𝑁 = 𝑁(𝜀), 𝑠 = 𝑠(𝜀), 𝑡 = 𝑡(𝜀), 𝑘
𝑛
= 𝑘
𝑛
(𝜀), 𝑙
𝑚

= 𝑙
𝑚
(𝜀) ∈ N such

that

𝐷(𝑢
𝑚𝑛

, 𝑢
𝑠𝑡
) < 𝜀 for (𝑚, 𝑛) , (𝑠, 𝑡) ∈ 𝑀,

𝐷 (𝑢
𝑚𝑛

, 𝑢
𝑘𝑛𝑛

) < 𝜀 for each 𝑚 ∈ 𝑀
1
and for each 𝑛 ∈ N,

𝐷 (𝑢
𝑚𝑛

, 𝑢
𝑚𝑙𝑚

) < 𝜀 for each 𝑛 ∈ 𝑀
2
and for each 𝑚 ∈ N,

(39)

whenever 𝑚, 𝑛, 𝑠, 𝑡, 𝑘
𝑛
, 𝑙
𝑚

≥ 𝑁.

Theorem 15. Let I
2
be a strongly admissible ideal of N × N,

and let I be an admissible ideal of N. If a double sequence
(𝑢
𝑚𝑛

) of fuzzy numbers is 𝑟(I∗
2
,I∗)-Cauchy, then it is

𝑟(I
2
,I)-Cauchy.

Proof. Since a double sequence (𝑢
𝑚𝑛

) of fuzzy numbers is
𝑟(I∗
2
,I∗)-Cauchy, it is I∗

2
-Cauchy. We know that I∗

2
-

Cauchy implies I
2
-Cauchy by Lemma 7. Also, since the

double sequence (𝑢
𝑚𝑛

) of fuzzy numbers is 𝑟(I∗
2
,I∗)-

Cauchy so there exist the sets 𝑀
1
,𝑀
2
∈ F(I) and for every

𝜀 > 0 there exist 𝑘
𝑛
= 𝑘
𝑛
(𝜀), 𝑙
𝑚

= 𝑙
𝑚
(𝜀) ∈ N such that

𝐷(𝑢
𝑚𝑛

, 𝑢
𝑘𝑛𝑛

) < 𝜀 for each 𝑚 ∈ 𝑀
1
and for each 𝑛 ∈ N,

𝐷 (𝑢
𝑚𝑛

, 𝑢
𝑚𝑙𝑚

) < 𝜀 for each 𝑛 ∈ 𝑀
2
and for each 𝑚 ∈ N

(40)

for 𝑁 = 𝑁(𝜀) ∈ N and 𝑚, 𝑛, 𝑘
𝑛
, 𝑙
𝑚

≥ 𝑁. Therefore, for 𝐻
1
=

N \ 𝑀
1
, 𝐻
2
= N \ 𝑀

2
∈ I we have

𝐴
1
(𝜀) = {𝑚 ∈ N : 𝐷 (𝑢

𝑚𝑛
, 𝑢
𝑘𝑛𝑛

) ≥ 𝜀}

⊂ 𝐻
1
∪ {1, 2, . . . , 𝑁 − 1} , (𝑛 ∈ N)

(41)

for 𝑚 ∈ 𝑀
1
and

𝐴
2
(𝜀) = {𝑛 ∈ N : 𝐷 (𝑢

𝑚𝑛
, 𝑢
𝑚𝑙𝑚

) ≥ 𝜀}

⊂ 𝐻
2
∪ {1, 2, . . . , 𝑁 − 1} , (𝑚 ∈ N)

(42)

for 𝑛 ∈ 𝑀
2
. SinceI is admissible ideal

𝐻
1
∪ {1, 2, . . . , 𝑁 − 1} ∈ I, 𝐻

2
∪ {1, 2, . . . , 𝑁 − 1} ∈ I.

(43)

Hence, we have 𝐴
1
(𝜀), 𝐴

2
(𝜀) ∈ I and (𝑢

𝑚𝑛
) is 𝑟(I

2
,I)-

Cauchy.

Theorem 16. Let I
2
be a strongly admissible ideal of N × N,

and let I be an admissible ideal of N. If a double sequence
(𝑢
𝑚𝑛

) of fuzzy numbers is 𝑟(I
2
,I)-convergent, then (𝑢

𝑚𝑛
) is

𝑟(I
2
,I)-Cauchy sequence.

Proof. Let (𝑢
𝑚𝑛

) be a 𝑟(I
2
,I)-convergent double sequence

of fuzzy numbers. Then (𝑢
𝑚𝑛

) is I
2
-convergent, and by

Lemma 6, it is I
2
-Cauchy sequence of fuzzy numbers. Also

for every 𝜀 > 0, we have

𝐴
1
(
𝜀

2
) = {𝑚 ∈ N : 𝐷 (𝑢

𝑚𝑛
, V
𝑛
) ≥

𝜀

2
} ∈ I (44)

for some fuzzy numbers V
𝑛
, for each 𝑛 ∈ N and

𝐴
2
(
𝜀

2
) = {𝑛 ∈ N : 𝐷 (𝑢

𝑚𝑛
, 𝑤
𝑚
) ≥

𝜀

2
} ∈ I (45)

for some fuzzy numbers 𝑤
𝑚
, for each 𝑚 ∈ N. Since I is

admissible ideal, the sets

𝐴
𝑐

1
(
𝜀

2
) = {𝑚 ∈ N : 𝐷 (𝑢

𝑚𝑛
, V
𝑛
) <

𝜀

2
} , (𝑛 ∈ N) (46)

for some fuzzy numbers V
𝑛
and

𝐴
𝑐

2
(
𝜀

2
) = {𝑛 ∈ N : 𝐷 (𝑢

𝑚𝑛
, 𝑤
𝑚
) <

𝜀

2
} , (𝑚 ∈ N) (47)

for some fuzzy numbers 𝑤
𝑚
, are nonempty and belong to

F(I). For 𝑘
𝑛

∈ 𝐴
𝑐

1
(𝜀/2), (𝑛 ∈ N and 𝑘

𝑛
> 0) we have

𝐷(𝑢
𝑘𝑛𝑛

, V
𝑛
) < 𝜀/2 for some fuzzy numbers V

𝑛
. Now, for 𝜀 > 0

we define the set

𝐵
1
(𝜀) = {𝑚 ∈ N : 𝐷 (𝑢

𝑚𝑛
, 𝑢
𝑘𝑛𝑛

) ≥ 𝜀} , (𝑛 ∈ N) , (48)

where 𝑘
𝑛

= 𝑘
𝑛
(𝜀). Let 𝑚 ∈ 𝐵

1
(𝜀). Then for 𝑘

𝑛
∈ 𝐴
𝑐

1
(𝜀/2),

(𝑛 ∈ N and 𝑘
𝑛
> 0) we have

𝜀 ≤ 𝐷 (𝑢
𝑚𝑛

, 𝑢
𝑘𝑛𝑛

) ≤ 𝐷 (𝑢
𝑚𝑛

, V
𝑛
) + 𝐷 (𝑢

𝑘𝑛𝑛
, V
𝑛
)

< 𝐷 (𝑢
𝑚𝑛

, V
𝑛
) +

𝜀

2

(49)
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for some fuzzy numbers V
𝑛
. This shows that

𝜀

2
< 𝐷 (𝑢

𝑚𝑛
, V
𝑛
) and so 𝑚 ∈ 𝐴

1
(
𝜀

2
) . (50)

Hence, we have 𝐵
1
(𝜀) ⊂ 𝐴

1
(𝜀/2).

Similarly, for 𝑙
𝑚

∈ 𝐴
𝑐

2
(𝜀/2) (𝑚 ∈ N and 𝑙

𝑚
> 0) we have

𝐷(𝑢
𝑚𝑙𝑚

, 𝑤
𝑚
) <

𝜀

2
, (𝑚 ∈ N) (51)

for some fuzzy numbers 𝑤
𝑚
. Therefore, it can be seen that

𝐵
2
(𝜀) = {𝑚 ∈ N : 𝐷 (𝑢

𝑚𝑙𝑚
, 𝑤
𝑚
) ≥ 𝜀} ⊂ 𝐴

2
(
𝜀

2
) . (52)

Hence, we have 𝐵
1
(𝜀), 𝐵
2
(𝜀) ∈ I. This shows that (𝑢

𝑚𝑛
) is

𝑟(I
2
,I)-Cauchy sequence of fuzzy numbers.
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