DEMONSTRATIO MATHEMATICA Vol. XLVII No 3 2014

ESCI

Erdinç Dündar, Celal Çakan

ROUGH I-CONVERGENCE

Abstract. In this work, using the concept of \mathcal{I} -convergence and using the concept of rough convergence, we introduced the notion of rough \mathcal{I} -convergence and the set of rough \mathcal{I} -limit points of a sequence and obtained two rough \mathcal{I} -convergence criteria associated with this set. Later, we proved that this set is closed and convex. Finally, we examined the relations between the set of \mathcal{I} -cluster points and the set of rough \mathcal{I} -limit points of a sequence.

1. Background and introduction

The concept of convergence of a sequence of real numbers has been extended to statistical convergence independently by Fast [4] and Schoenberg [15]. A lot of developments have been made in this area after the works of Aytar [1], Fridy [5], Miller [8] and Šalát [14]. In general, statistically convergent sequences satisfy many of the properties of ordinary convergent sequences in metric spaces.

The idea of \mathcal{I} -convergence was introduced by Kostyrko et al. [6] as a generalization of statistical convergence which is based on the structure of the ideal \mathcal{I} of subset of the set of natural numbers. Nuray and Ruckle [9] independently introduced the same with another name generalized statistical convergence. Kostyrko et al. [7] studied the idea of \mathcal{I} -convergence and extremal \mathcal{I} -limit points and Demirci [3] studied the concepts of \mathcal{I} -limit superior and limit inferior. Šalát, Tripathy and Ziman [13] introduced the notion of $c_A^{\mathcal{I}}$ and $m_A^{\mathcal{I}}$, the \mathcal{I} -convergence field and bounded \mathcal{I} -convergence field of an infinite matrix A.

The idea of rough convergence was first introduced by Phu [10] in finite-dimensional normed spaces. In [10], he showed that the set LIM^rx is bounded, closed, and convex; and he introduced the notion of rough Cauchy sequence. He also investigated the relations between rough convergence and other

2010 Mathematics Subject Classification: 40A05, 40A35.

Key words and phrases: ideal, rough convergence, \mathcal{I} -convergence, rough \mathcal{I} -convergence.

convergence types and the dependence of LIM^rx on the roughness degree r. In another paper [11] related to this subject, he defined the rough continuity of linear operators and showed that every linear operator $f:X\to Y$ is r-continuous at every point $x\in X$ under the assumption $dimY<\infty$ and r>0 where X and Y are normed spaces. In [12], he extended the results given in [10] to infinite-dimensional normed spaces.

In [1], Aytar studied rough statistical convergence and defined the set of rough statistical limit points of a sequence and obtained two statistical convergence criteria associated with this set and prove that this set is closed and convex. Also in [2], Aytar studied that the r-limit set of the sequence is equal to the intersection of these sets and that r-core of the sequence is equal to the union of these sets.

In this paper, using the concept of \mathcal{I} -convergence and using the concept of rough convergence, we introduce the notion of rough \mathcal{I} -convergence. Defining the set of rough \mathcal{I} -limit points of a sequence, we obtain two \mathcal{I} -convergence criteria associated with this set. Later, we prove that this set is closed and convex. Finally, we examine the relations between the set of \mathcal{I} -cluster points and the set of rough \mathcal{I} -limit points of a sequence. We note that our results and proof techniques presented in this paper are \mathcal{I} analogues of those in Phu's [10] paper and Aytar's [1] paper. The actual origin of most of these results and proof techniques is in those papers. Our theorems and results are the \mathcal{I} -extension of theorems and results in [1, 10].

Let K be a subset of the set of positive integers \mathbb{N} and let us denote the set $K_i = \{k \in K : k \leq i\}$. Then the natural density of K is given by

$$\delta(K) = \lim_{i \to \infty} \frac{|K_i|}{i},$$

where $|K_i|$ denotes the number of elements in K_i .

Throughout the paper, \mathbb{N} denotes the set of all positive integers, χ_A -the characteristic function of $A \subset \mathbb{N}$, \mathbb{R} the set of all real numbers. Recall that a subset A of \mathbb{N} is said to have asymptotic density d(A) if

$$d(A) = \lim_{i \to \infty} \frac{1}{i} \sum_{k=1}^{i} \chi_A(k).$$

DEFINITION 1.1. [4] A sequence $x = (x_i)_{i \in \mathbb{N}}$ of real numbers is said to be statistically convergent to $L \in \mathbb{R}$ if for any $\varepsilon > 0$ we have $d(A(\varepsilon)) = 0$, where $A(\varepsilon) = \{i \in \mathbb{N} : |x_i - L| \ge \varepsilon\}$.

Throughout the paper, \mathbb{R}^n denotes the real *n*-dimensional space with the norm $\|.\|$. Consider a sequence $x = (x_i)$ such that $x_i \in \mathbb{R}^n$.

DEFINITION 1.2. [1] A sequence $x = (x_i)$ is said to be statistically convergent to $L \in \mathbb{R}^n$, written as st-lim x = L, provided that the set

$$\{i \in \mathbb{N} : ||x_i - L|| \ge \varepsilon\}$$

has natural density zero for every $\varepsilon > 0$. In this case, L is called the statistical limit of the sequence x.

DEFINITION 1.3. Let $X \neq \emptyset$. A class \mathcal{I} of subsets of X is said to be an ideal in X provided:

i) $\emptyset \in \mathcal{I}$, ii) $A, B \in \mathcal{I}$ implies $A \cup B \in \mathcal{I}$, iii) $A \in \mathcal{I}$, $B \subset A$ implies $B \in \mathcal{I}$. \mathcal{I} is called a nontrivial ideal if $X \notin \mathcal{I}$.

DEFINITION 1.4. Let $X \neq \emptyset$. A non empty class \mathcal{F} of subsets of X is said to be a filter in X provided:

i) $\emptyset \notin \mathcal{F}$, ii) $A, B \in \mathcal{F}$ implies $A \cap B \in \mathcal{F}$, iii) $A \in \mathcal{F}$, $A \subset B$ implies $B \in \mathcal{F}$.

LEMMA 1.5. [6] If \mathcal{I} is a nontrivial ideal in X, $X \neq \emptyset$, then the class

$$\mathcal{F}(\mathcal{I}) = \{ M \subset X : (\exists A \in \mathcal{I})(M = X \backslash A) \}$$

is a filter on X, called the filter associated with \mathcal{I} .

A nontrivial ideal \mathcal{I} in X is called admissible if $\{x\} \in \mathcal{I}$ for each $x \in X$.

EXAMPLE 1.6. ([6], Example 3.1.) Denote by \mathcal{I}_d the class of all $A \subset \mathbb{N}$ with d(A) = 0. Then \mathcal{I}_d is non-trivial admissible ideal and \mathcal{I}_d -convergence coincides with the statistical convergence.

Throughout the paper, we take \mathcal{I} as a nontrivial admissible ideal in \mathbb{N} .

DEFINITION 1.7. [6] Let (X, ρ) be a linear metric space and $\mathcal{I} \subset 2^{\mathbb{N}}$ be a non-trivial ideal. A sequence $(x_i)_{i \in \mathbb{N}}$ of elements of X is said to be \mathcal{I} -convergent to $\xi \in X$ ($\mathcal{I} - \lim_{i \to \infty} x_i = \xi$) if and only if for each $\varepsilon > 0$ the set $A(\varepsilon) = \{i \in \mathbb{N} : \rho(x_i, \xi) \geq \varepsilon\}$ belongs to \mathcal{I} . The element ξ is called the \mathcal{I} -limit of the sequence $x = (x_i)_{i \in \mathbb{N}}$.

Note that if \mathcal{I} is an admissible ideal, then usual convergence in X implies \mathcal{I} -convergence in X.

DEFINITION 1.8. [3] For a sequence $x = (x_i)$ of real numbers, the notions of ideal limit superior and ideal limit inferior are defined as follows:

$$\mathcal{I} - \limsup x = \begin{cases} \sup B_x, & \text{if } B_x \neq \emptyset, \\ -\infty, & \text{if } B_x = \emptyset, \end{cases}$$

and

$$\mathcal{I} - \lim \inf x = \begin{cases} \inf A_x, & \text{if } A_x \neq \emptyset, \\ +\infty, & \text{if } A_x = \emptyset, \end{cases}$$

where $A_x = \{a \in \mathbb{R} : \{i \in \mathbb{N} : x_i < a\} \notin \mathcal{I}\}$ and $B_x = \{b \in \mathbb{R} : \{i \in \mathbb{N} : x_i > b\} \notin \mathcal{I}\}.$

Throughout the paper, let r be a nonnegative real number. The sequence $x = (x_i)$ is said to be r-convergent to x_* , denoted by $x_i \to^r x_*$ provided that

$$\forall \varepsilon > 0 \ \exists i_{\varepsilon} \in \mathbb{N} : i \ge i_{\varepsilon} \Rightarrow ||x_i - x_*|| < r + \varepsilon.$$

The set

$$LIM^r x := \{ x_* \in \mathbb{R}^n : x_i \to^r x_* \}$$

is called the r-limit set of the sequence $x = (x_i)$. A sequence $x = (x_i)$ is said to be r-convergent if $LIM^rx \neq \emptyset$. In this case, r is called the convergence degree of the sequence $x = (x_i)$. For r = 0, we get the ordinary convergence. There are several reasons for this interest (see [10]).

A sequence $x = (x_i)$ is said to be \mathcal{I} -convergent to $L \in \mathbb{R}^n$, written as \mathcal{I} -lim x = L, provided that the set

$$\{i \in \mathbb{N} : ||x_i - L|| \ge \varepsilon\}$$

belongs to \mathcal{I} for every $\varepsilon > 0$. In this case, L is called the \mathcal{I} -limit of the sequence x.

 $c \in \mathbb{R}^n$ is called a \mathcal{I} -cluster point of a sequence $x = (x_i)$ provided that

$$\{i \in \mathbb{N} : ||x_i - c|| < \varepsilon\} \notin \mathcal{I},$$

for every $\varepsilon > 0$. We denote the set of all \mathcal{I} -cluster points of the sequence x by $\mathcal{I}(\Gamma_x)$.

A sequence $x = (x_i)$ is said to be \mathcal{I} -bounded if there exists a positive real number M such that

$$\{i \in \mathbb{N} : ||x_i|| \ge M\} \in \mathcal{I}.$$

2. Main results

DEFINITION 2.1. A sequence $x = (x_i)$ is said to be rough \mathcal{I} -convergent to x_* , denoted by $x_i \xrightarrow{r-\mathcal{I}} x_*$ provided that

$$\{i \in \mathbb{N} : ||x_i - x_*|| \ge r + \varepsilon\}$$

belongs to \mathcal{I} for every $\varepsilon > 0$; or equivalently, if the condition

$$(2.1) \mathcal{I} - \limsup ||x_i - x_*|| \le r$$

is satisfied. In addition, we can write $x_i \xrightarrow{r-\mathcal{I}} x_*$ iff the inequality $||x_i - x_*|| < r + \varepsilon$ holds for every $\varepsilon > 0$ and almost all i.

Remark 2.2. If \mathcal{I} is an admissible ideal, then usual rough convergence implies rough \mathcal{I} -convergence.

Here r is called the roughness degree. If we take r = 0, then we obtain the ordinary ideal convergence. In a similar fashion to the idea of classic rough convergence, the idea of rough \mathcal{I} -convergence of a sequence can be interpreted as follows.

Assume that a sequence $y = (y_i)$ is \mathcal{I} -convergent and cannot be measured or calculated exactly; one has to do with an approximated (or \mathcal{I} approximated) sequence $x = (x_i)$ satisfying $||x_i - y_i|| \le r$ for all i (i.e., $\{i \in \mathbb{N} : ||x_i - y_i|| > r\} \in \mathcal{I}$). Then the sequence x is not \mathcal{I} -convergent any more, but as the inclusion

$$(2.2) \{i \in \mathbb{N} : ||y_i - y_*|| \ge \varepsilon\} \supseteq \{i \in \mathbb{N} : ||x_i - y_*|| \ge r + \varepsilon\}$$

holds and we have $\{i \in \mathbb{N} : ||y_i - y_*|| \ge \varepsilon\} \in \mathcal{I}$, we get $\{i \in \mathbb{N} : ||x_i - y_*|| \ge r + \varepsilon\} \in \mathcal{I}$, i.e., the sequence x is rough \mathcal{I} -convergent in the sense of Definition 2.1.

In general, the rough \mathcal{I} -limit of a sequence may not be unique for the roughness degree r > 0. So we have to consider the so-called rough \mathcal{I} -limit set of a sequence $x = (x_i)$, which is defined by

$$\mathcal{I} - LIM^r x := \{ x_* \in \mathbb{R}^n : x_i \xrightarrow{r-\mathcal{I}} x_* \}.$$

A sequence $x = (x_i)$ is said to be rough \mathcal{I} -convergent if $\mathcal{I} - \text{LIM}^r x \neq \emptyset$. It is clear that if $\mathcal{I} - \text{LIM}^r x \neq \emptyset$ for a sequence $x = (x_i)$ of real numbers, then we have

(2.3)
$$\mathcal{I} - \text{LIM}^r x = [\mathcal{I} - \limsup x - r, \mathcal{I} - \liminf x + r].$$

We know that $LIM^r x = \emptyset$ for an unbounded sequence $x = (x_i)$. But such a sequence might be rough \mathcal{I} -convergent. For instance, let \mathcal{I} be the \mathcal{I}_d of \mathbb{N} and define

(2.4)
$$x_i = \begin{cases} \cos i\pi, & \text{if } i \neq k^2 (k \in \mathbb{N}), \\ i, & \text{otherwise} \end{cases}$$

in \mathbb{R}^1 . Because the set $\{1,4,9,16,\ldots\}$ belongs to \mathcal{I} , we have

$$\mathcal{I} - \text{LIM}^r x = \begin{cases} \emptyset, & \text{if } r < 1, \\ [1 - r, r - 1], & \text{otherwise} \end{cases}$$

and $LIM^r x = \emptyset$, for all $r \ge 0$.

As can be seen by the example above, the fact that $\mathcal{I} - \text{LIM}^r x \neq \emptyset$ does not imply $\text{LIM}^r x \neq \emptyset$. Because \mathcal{I} is a admissible ideal, $\text{LIM}^r x \neq \emptyset$ implies $\mathcal{I} - \text{LIM}^r x \neq \emptyset$, i.e., if $x = (x_i) \in \text{LIM}^r x$ then, by Remark 2.2 $x = (x_i) \in \mathcal{I} - \text{LIM}^r x$, for each sequence $x = (x_i)$. Also, if we define all the rough convergence sequences by LIM^r and if we define all the rough \mathcal{I} -convergence sequences by $\mathcal{I} - \text{LIM}^r$, then we get $\text{LIM}^r \subseteq \mathcal{I} - \text{LIM}^r$. This

obvious fact means

$$\{r \ge 0 : \text{LIM}^r x \ne \emptyset\} \subseteq \{r \ge 0 : \mathcal{I} - \text{LIM}^r x \ne \emptyset\}$$

in the language of sets and yields immediately

$$\inf\{r \geq 0 : \text{LIM}^r x \neq \emptyset\} \geq \inf\{r \geq 0 : \mathcal{I} - \text{LIM}^r x \neq \emptyset\},\$$

for each $x = (x_i)$ sequence. Moreover, it also yields directly

$$diam(LIM^r x) \leq diam(\mathcal{I} - LIM^r x).$$

As noted above, we cannot say that the rough \mathcal{I} -limit of a sequence is unique for the roughness degree r > 0. The following result is related to the this fact.

THEOREM 2.3. Let $\mathcal{I} \subset 2^{\mathbb{N}}$ be an admissible ideal. For a sequence $x = (x_i)$, we have $diam(\mathcal{I} - LIM^r x) \leq 2r$. In general, $diam(\mathcal{I} - LIM^r x)$ has no smaller bound.

Proof. Assume that $diam(\mathcal{I} - \text{LIM}^r x) > 2r$. Then there exist $y, z \in \mathcal{I} - \text{LIM}^r x$ such that ||y - z|| > 2r. Take $\varepsilon \in (0, \frac{||y - z||}{2} - r)$. Because $y, z \in \mathcal{I} - \text{LIM}^r x$, we have $A_1(\varepsilon) \in \mathcal{I}$ and $A_2(\varepsilon) \in \mathcal{I}$ for every $\varepsilon > 0$, where

$$A_1(\varepsilon) = \{i \in \mathbb{N} : ||x_i - y|| \ge r + \varepsilon\} \text{ and } A_2(\varepsilon) = \{i \in \mathbb{N} : ||x_i - z|| \ge r + \varepsilon\}.$$

Using the properties of $\mathcal{F}(\mathcal{I})$, we get

$$(A_1(\varepsilon)^c \cap A_2(\varepsilon)^c) \in \mathcal{F}(\mathcal{I}).$$

Thus, we can write

$$||y - z|| \le ||x_i - y|| + ||x_i - z|| < 2(r + \varepsilon) < 2\left(r + \frac{||y - z||}{2} - r\right) = ||y - z||,$$

for all $i \in A_1(\varepsilon)^c \cap A_2(\varepsilon)^c$, which is a contradiction.

Now let us prove the second part of the theorem. Consider a sequence $x = (x_i)$ such that \mathcal{I} -lim $x_i = x_*$. Let $\varepsilon > 0$. Then, we can write

$$\{i \in \mathbb{N} : ||x_i - x_*|| \ge \varepsilon\} \in \mathcal{I}.$$

Thus, we have

$$||x_i - y|| \le ||x_i - x_*|| + ||x_* - y|| \le ||x_i - x_*|| + r,$$

for each $y \in \overline{B_r}(x_*) := \{y \in \mathbb{R}^n : ||y - x_*|| \le r\}$. Then, we get

$$||x_i - y|| < r + \varepsilon,$$

for each $i \in \{i \in \mathbb{N} : ||x_i - x_*|| < \varepsilon\}$. Because the sequence x is \mathcal{I} -convergent to x_* , we have

$$\{i \in \mathbb{N} : ||x_i - x_*|| < \varepsilon\} \in \mathcal{F}(\mathcal{I}).$$

Therefore, we get $y \in \mathcal{I} - LIM^r x$. Consequently, we can write

(2.5)
$$\mathcal{I} - LIM^r x = \overline{B_r}(x_*).$$

Because $diam(\overline{B_r}(x_*)) = 2r$, this shows that in general, the upper bound 2r of the diameter of the set $\mathcal{I} - \text{LIM}^r x$ cannot be decreased anymore.

By [10, Proposition 2.2], there exists a nonnegative real number r such that $\text{LIM}^r x \neq \emptyset$ for a bounded sequence. Because the fact $\text{LIM}^r x \neq \emptyset$ implies $\mathcal{I} - \text{LIM}^r x \neq \emptyset$, we have the following result.

RESULT 2.1. Let $\mathcal{I} \subset 2^{\mathbb{N}}$ be an admissible ideal. If a sequence $x = (x_i)$ is bounded, then there exists a nonnegative real number r such that $\mathcal{I} - \text{LIM}^r x \neq \emptyset$.

The converse implication of the above result is not valid. If we take the sequence as \mathcal{I} -bounded, then the converse of Result 2.1 holds. Thus we have the following theorem.

THEOREM 2.4. Let $\mathcal{I} \subset 2^{\mathbb{N}}$ be an admissible ideal. A sequence $x = (x_i)$ is \mathcal{I} -bounded if and only if there exists a nonnegative real number r such that $\mathcal{I} - \text{LIM}^r x \neq \emptyset$. And also, for all r > 0, an \mathcal{I} -bounded sequence $x = (x_i)$ always contains a subsequence (x_{i_j}) with $\mathcal{I} - \text{LIM}^{(x_{i_j}),r} x_{i_j} \neq \emptyset$.

Proof. Because the sequence x is \mathcal{I} -bounded, there exists a positive real number M such that $\{i \in \mathbb{N} : \|x_i\| \geq M\} \in \mathcal{I}$. Define $r' := \sup\{\|x_i\| : i \in K^c\}$, where $K = \{i \in \mathbb{N} : \|x_i\| \geq M\}$. Then the set $\mathcal{I} - \text{LIM}^{r'}x$ contains the origin of \mathbb{R}^n . So we have $\mathcal{I} - \text{LIM}^{r'}x \neq \emptyset$.

If $\mathcal{I} - \text{LIM}^r x \neq \emptyset$ for some $r \geq 0$, then there exists x_* such that $x_* \in \mathcal{I} - \text{LIM}^r x$, i.e.,

$$\{i \in \mathbb{N} : ||x_i - x_*|| \ge r + \varepsilon\} \in \mathcal{I},$$

for each $\varepsilon > 0$. Then we say that almost all x_i 's are contained in some ball with any radius greater than r. So the sequence x is \mathcal{I} -bounded.

As (x_i) is a \mathcal{I} -bounded sequence in a finite-dimensional normed space, it certainly contains a \mathcal{I} -convergent subsequence (x_{i_j}) . Let x_* be its \mathcal{I} -limit point, then $\mathcal{I} - \text{LIM}^r x_{i_j} = \overline{B}_r(x_*)$ and, for r > 0,

$$\mathcal{I} - \text{LIM}^{(x_{i_j}),r} x_{i_j} \neq \emptyset. \blacksquare$$

Also, we have the following theorem.

THEOREM 2.5. Let $\mathcal{I} \subset 2^{\mathbb{N}}$ be an admissible ideal. If (x_{i_j}) is a subsequence of (x_i) , then

$$\mathcal{I} - \text{LIM}^r x_i \subseteq \mathcal{I} - \text{LIM}^r x_{i_i}$$
.

Proof. The proof is trivial (see [10], Proposition 2.3).

Now we give the topological and geometrical properties of the rough \mathcal{I} -limit set of a sequence.

THEOREM 2.6. Let $\mathcal{I} \subset 2^{\mathbb{N}}$ be an admissible ideal. The rough \mathcal{I} -limit set of a sequence $x = (x_i)$ is closed.

Proof. If $\mathcal{I} - \text{LIM}^r x = \emptyset$, then there is nothing to prove. Assume that $\mathcal{I} - \text{LIM}^r x \neq \emptyset$. Then we can choose a sequence $(y_i) \subseteq \mathcal{I} - \text{LIM}^r x$ such that $y_i \to y_*$ for $i \to \infty$. If we show that $y_* \in \mathcal{I} - \text{LIM}^r x$, then the proof will be complete.

Let $\varepsilon > 0$ be given. Because $y_i \to y_*$, there exists $i_{\frac{\varepsilon}{2}} \in \mathbb{N}$ such that

$$||y_i - y_*|| < \frac{\varepsilon}{2}, \quad \text{for all } i > i_{\frac{\varepsilon}{2}}.$$

Now choose an $i_0 \in \mathbb{N}$ such that $i_0 > i_{\frac{\varepsilon}{2}}$. Then we can write

$$||y_{i_0} - y_*|| < \frac{\varepsilon}{2}.$$

On the other hand, because $(y_i) \subseteq \mathcal{I} - \text{LIM}^r x$, we have $y_{i_0} \in \mathcal{I} - \text{LIM}^r x$, namely,

(2.6)
$$A(\frac{\varepsilon}{2}) = \left\{ i \in \mathbb{N} : ||x_i - y_{i_0}|| \ge r + \frac{\varepsilon}{2} \right\} \in \mathcal{I}.$$

Now let us show that the inclusion

(2.7)
$$A^{c}(\frac{\varepsilon}{2}) \subseteq A^{c}(\varepsilon)$$

holds, where $A(\varepsilon) = \{i \in \mathbb{N} : ||x_i - y_*|| \ge r + \varepsilon\}$. Take $j \in A^c(\frac{\varepsilon}{2})$. Then we have

$$||x_j - y_{i_0}|| < r + \frac{\varepsilon}{2}$$

and hence

$$||x_i - y_*|| \le ||x_i - y_{i_0}|| + ||y_{i_0} - y_*|| < r + \varepsilon,$$

that is, $j \in A^c(\varepsilon)$, which proves (2.7). So, we have

$$A(\varepsilon) \subseteq A\left(\frac{\varepsilon}{2}\right)$$
.

Because $A(\frac{\varepsilon}{2}) \in \mathcal{I}$ by (2.6), we get $A(\varepsilon) \in \mathcal{I}$ (i.e., $y_* \in \mathcal{I} - \text{LIM}^r x$), which completes the proof. \blacksquare

THEOREM 2.7. Let $\mathcal{I} \subset 2^{\mathbb{N}}$ be an admissible ideal. The rough \mathcal{I} -limit set of a sequence $x = (x_i)$ is convex.

Proof. Assume that $y_0, y_1 \in \mathcal{I} - \text{LIM}^r x$ for the sequence $x = (x_i)$ and let $\varepsilon > 0$ be given. Define

$$A_1(\varepsilon) = \{i \in \mathbb{N} : ||x_i - y_0|| \ge r + \varepsilon\} \text{ and } A_2(\varepsilon) = \{i \in \mathbb{N} : ||x_i - y_1|| \ge r + \varepsilon\}.$$

Because $y_0, y_1 \in \mathcal{I} - \text{LIM}^r x$, we have $A_1(\varepsilon) \in \mathcal{I}$ and $A_2(\varepsilon) \in \mathcal{I}$. Thus we have

$$||x_i - [(1 - \lambda)y_0 + \lambda y_1]|| = ||(1 - \lambda)(x_i - y_0) + \lambda(x_i - y_1)|| < r + \varepsilon,$$

for each $i \in A_1^c(\varepsilon) \cap A_2^c(\varepsilon)$ and each $\lambda \in [0,1]$. Because $(A_1^c(\varepsilon) \cap A_2^c(\varepsilon)) \in \mathcal{F}(\mathcal{I})$ by definition $\mathcal{F}(\mathcal{I})$, we get

$$\{i \in \mathbb{N} : ||x_i - \lceil (1 - \lambda)y_0 + \lambda y_1 \rceil|| \ge r + \varepsilon\} \in \mathcal{I},$$

that is,

$$[(1-\lambda)y_0 + \lambda y_1] \in \mathcal{I} - LIM^r x,$$

which proves the convexity of the set $\mathcal{I} - \text{LIM}^r x$.

THEOREM 2.8. Let $\mathcal{I} \subset 2^{\mathbb{N}}$ be an admissible ideal. Suppose r > 0. Then a sequence $x = (x_i)$ is rough \mathcal{I} -convergent to x_* if and only if there exists a sequence $y = (y_i)$ such that

(2.8)
$$\mathcal{I} - \lim y = x_* \text{ and } ||x_i - y_i|| \le r, \text{ for each } i \in \mathbb{N}.$$

Proof. Assume that $x = (x_i)$ is rough \mathcal{I} -convergent to x_* . Then, by (2.1) we have

$$(2.9) \mathcal{I} - \limsup ||x_i - x_*|| \le r.$$

Now, define

$$y_i = \begin{cases} x_*, & \text{if } ||x_i - x_*|| \le r, \\ x_i + r \frac{x_* - x_i}{||x_i - x_*||}, & \text{otherwise.} \end{cases}$$

Then, we have

$$||y_i - x_*|| = \begin{cases} 0, & \text{if } ||x_i - x_*|| \le r, \\ ||x_i - x_*|| - r, & \text{otherwise,} \end{cases}$$

and by definition of y_i ,

$$(2.10) ||x_i - y_i|| \le r,$$

for all $i \in \mathbb{N}$. By (2.9) and the definition of y_i , we get

$$\mathcal{I} - \limsup \|y_i - x_*\| = 0,$$

which implies that $\mathcal{I} - \lim y_i = x_*$.

Assume that (2.8) holds. Because $\mathcal{I} - \lim y = x_*$, we have

$$A(\varepsilon) = \{ i \in \mathbb{N} : ||y_i - x_*|| \ge +\varepsilon \} \in \mathcal{I},$$

for each $\varepsilon > 0$. Now, define the set

$$B(\varepsilon) = \{ i \in \mathbb{N} : ||x_i - x_*|| \ge r + \varepsilon \}.$$

It is easy to see that the inclusion

$$B(\varepsilon)\subseteq A(\varepsilon)$$

holds. Since $A(\varepsilon) \in \mathcal{I}$, we get $B(\varepsilon) \in \mathcal{I}$. Hence, $x = (x_i)$ is rough \mathcal{I} -convergent to x_* .

If we replace the condition " $||x_i - y_i|| \le r$ for all $i \in \mathbb{N}$ " in the hypothesis of the above theorem with the condition " $\{i \in \mathbb{N} : ||x_i - y_i|| > r\} \in \mathcal{I}$ " then the theorem will also be valid.

Now we give an important property of the set of rough \mathcal{I} -limit points of a sequence.

LEMMA 2.9. Let $\mathcal{I} \subset 2^{\mathbb{N}}$ be an admissible ideal. For an arbitrary $c \in \mathcal{I}(\Gamma_x)$ of a sequence $x = (x_i)$, we have

$$||x_* - c|| \le r \text{ for all } x_* \in \mathcal{I} - \text{LIM}^r x.$$

Proof. Assume on the contrary that there exist a point $c \in \mathcal{I}(\Gamma_x)$ and $x_* \in \mathcal{I} - \text{LIM}^r x$ such that $||x_* - c|| > r$. Define $\varepsilon := \frac{||x_* - c|| - r}{3}$. Then we can write

$$(2.11) \{i \in \mathbb{N} : ||x_i - c|| < \varepsilon\} \subseteq \{i \in \mathbb{N} : ||x_i - x_*|| \ge r + \varepsilon\}.$$

Since $c \in \mathcal{I}(\Gamma_x)$, we have

$$\{i \in \mathbb{N} : ||x_i - c|| < \varepsilon\} \notin \mathcal{I}.$$

But from definition of \mathcal{I} -convergence, since

$$\{i \in \mathbb{N} : ||x_i - x_*|| \ge r + \varepsilon\} \in \mathcal{I},$$

so by (2.11) we have

$$\{i \in \mathbb{N} : ||x_i - c|| < \varepsilon\} \in \mathcal{I},$$

which contradicts the fact $c \in \mathcal{I}(\Gamma_x)$. On the other hand, if $c \in \mathcal{I}(\Gamma_x)$ (i.e., $\{i \in \mathbb{N} : ||x_i - c|| < \varepsilon\} \notin \mathcal{I}$) then

$$\{i \in \mathbb{N} : ||x_i - x_*|| \ge r + \varepsilon\}$$

must not belong to \mathcal{I} , which contradicts the fact $x_* \in \mathcal{I} - \text{LIM}^r x$. This completed the proof of theorem. \blacksquare

Now we give two \mathcal{I} -convergence criteria associated with the rough \mathcal{I} -limit set.

THEOREM 2.10. Let $\mathcal{I} \subset 2^{\mathbb{N}}$ be an admissible ideal. A sequence $x = (x_i)$ \mathcal{I} -converges to x_* if and only if

$$\mathcal{I} - \text{LIM}^r x = \overline{B}_r(x_*).$$

Proof. Since $x = (x_i)$ \mathcal{I} -converges to x_* , we have $\mathcal{I} - \text{LIM}^r x = \overline{B}_r(x_*)$ by the proof of the Theorem 2.3.

Let $\mathcal{I} - \text{LIM}^r x = \overline{B}_r(x_*) \neq \emptyset$. Then from Theorem 2.4, we have that the sequence $x = (x_i)$ is \mathcal{I} -bounded. Assume on the contrary that the sequence x has another \mathcal{I} -cluster point x'_* different from x_* . Then the point

$$\overline{x}_* := x_* + \frac{r}{\|x_* - x_*'\|} (x_* - x_*')$$

satisfies

$$\|\overline{x}_* - x'_*\| = \left(\frac{r}{\|x_* - x'_*\|} + 1\right) \|x_* - x'_*\| = r + \|x_* - x'_*\| > r.$$

Since x'_* is an \mathcal{I} -cluster point of the sequence x, by Lemma 2.9 this inequality implies that

$$\overline{x}_* \notin \mathcal{I} - \text{LIM}^r x.$$

This contradicts with the fact that $\|\overline{x}_* - x_*\| = r$ and $\mathcal{I} - \text{LIM}^r x = \overline{B}_r(x_*)$. Hence, x_* is the unique \mathcal{I} -cluster point of the sequence x as a bounded sequence (by Theorem 2.4) in some finite-dimensional normed space. Consequently, we can say that

$$x_i \rightarrow_{\mathcal{I}} x_*$$
.

It is easy to seen that $\mathcal{I} - \lim x = x_*$ yields the existence of $y_1, y_2 \in \mathcal{I} - \text{LIM}^r x$ satisfying $||y_1 - y_2|| = 2r$. Because $\text{LIM}^r x \subseteq \mathcal{I} - \text{LIM}^r x$, using Phu's example [10, Example 3.2], it can be easily shown that the existence of $y_1, y_2 \in \mathcal{I} - \text{LIM}^r x$ such that $||y_1 - y_2|| = 2r$ does not imply the \mathcal{I} -convergence of the sequence $x = (x_i)$. The following result is related to the this converse implication.

THEOREM 2.11. Let $\mathcal{I} \subset 2^{\mathbb{N}}$ be an admissible ideal, $(\mathbb{R}^n, \|.\|)$ be a strictly convex space and $x = (x_i)$ be a sequence in this space. If there exist $y_1, y_2 \in \mathcal{I} - \text{LIM}^r x$ such that $\|y_1 - y_2\| = 2r$, then this sequence is \mathcal{I} -convergent to $\frac{1}{2}(y_1 + y_2)$.

Proof. Let $c \in \mathcal{I}(\Gamma_x)$. Then since $y_1, y_2 \in \mathcal{I} - \text{LIM}^r x$, we have

$$||y_1 - c|| \le r \text{ and } ||y_2 - c|| \le r,$$

by Lemma 2.9. On the other hand, we have

$$(2.13) 2r = ||y_1 - y_2|| \le ||y_1 - c|| + ||y_2 - c||.$$

Therefore, we get $||y_1 - c|| = ||y_2 - c|| = r$ by inequalities (2.12) and (2.13). Since

$$(2.14) \quad \frac{1}{2}(y_2 - y_1) = \frac{1}{2}[(c - y_1) + (y_2 - c)] \quad \text{and} \quad ||y_1 - y_2|| = 2r,$$

we get $\|\frac{1}{2}(y_2 - y_1)\| = r$. By the strict convexity of the space and from the equality (2.14), we get

$$\frac{1}{2}(y_2 - y_1) = c - y_1 = y_2 - c,$$

which implies that $c = \frac{1}{2}(y_1 + y_2)$. Hence c is the unique \mathcal{I} -cluster point of the sequence $x = (x_i)$. On the other hand, the assumption $y_1, y_2 \in \mathcal{I} - \text{LIM}^r x$ implies that $\mathcal{I} - \text{LIM}^r x \neq \emptyset$. By Theorem 2.4, the sequence x is \mathcal{I} -bounded.

Consequently, the sequence $x = (x_i)$ must \mathcal{I} -convergent to $\frac{1}{2}(y_1 + y_2)$, i.e.,

$$\mathcal{I} - \lim x = \frac{1}{2}(y_1 + y_2). \blacksquare$$

THEOREM 2.12. Let $\mathcal{I} \subset 2^{\mathbb{N}}$ be an admissible ideal.

(i) If $c \in \mathcal{I}(\Gamma_x)$ then

(2.15)
$$\mathcal{I} - \text{LIM}^r x \subseteq \overline{B}_r(c).$$

(ii)

(2.16)
$$\mathcal{I} - \text{LIM}^r x = \bigcap_{c \in \mathcal{I}(\Gamma_x)} \overline{B}_r(c) = \{x_* \in \mathbb{R}^n : \mathcal{I}(\Gamma_x) \subseteq \overline{B}_r(x_*)\}.$$

Proof. (i) If $c \in \mathcal{I}(\Gamma_x)$ then by Lemma 2.9, we have

$$||x_* - c|| \le r$$
, for all $x_* \in \mathcal{I} - \text{LIM}^r x$,

otherwise we get

$$\{i \in \mathbb{N} : ||x_i - x_*|| \ge r + \varepsilon\} \notin \mathcal{I}, \quad \text{for } \varepsilon := \frac{||x_* - c|| - r}{3}.$$

Because c is an \mathcal{I} -cluster point of (x_i) , this contradicts with the fact that $x_* \in \mathcal{I} - \text{LIM}^r x$.

(ii) From (2.15), we have

(2.17)
$$\mathcal{I} - \operatorname{LIM}^r x \subseteq \bigcap_{c \in \mathcal{I}(\Gamma_r)} \overline{B}_r(c).$$

Now, let $y \in \bigcap_{c \in \mathcal{I}(\Gamma_r)} \overline{B}_r(c)$. Then we have

$$||y - c|| \le r,$$

for all $c \in \mathcal{I}(\Gamma_x)$, which is equivalent to $\mathcal{I}(\Gamma_x) \subseteq \overline{B}_r(y)$, i.e.,

(2.18)
$$\bigcap_{c \in \mathcal{I}(\Gamma_x)} \overline{B}_r(c) \subseteq \{x_* \in \mathbb{R}^n : \mathcal{I}(\Gamma_x) \subseteq \overline{B}_r(x_*)\}.$$

Now, let $y \notin \mathcal{I} - \text{LIM}^r x$. Then, there exists an $\varepsilon > 0$ such that

$$\{i \in \mathbb{N} : ||x_i - y|| \ge r + \varepsilon\} \notin \mathcal{I},$$

which implies the existence of an \mathcal{I} -cluster point c of the sequence x with $||y-c|| \ge r + \varepsilon$, i.e.,

$$\mathcal{I}(\Gamma_x) \nsubseteq \overline{B}_r(y)$$
 and $y \notin \{x_* \in \mathbb{R}^n : \mathcal{I}(\Gamma_x) \subseteq \overline{B}_r(x_*)\}.$

Hence, $y \in \mathcal{I} - \text{LIM}^r x$ follows from $y \in \{x_* \in \mathbb{R}^n : \mathcal{I}(\Gamma_x) \subseteq \overline{B}_r(x_*)\}$, i.e.,

$$(2.19) {x_* \in \mathbb{R}^n : \mathcal{I}(\Gamma_x) \subseteq \overline{B}_r(x_*)} \subseteq \mathcal{I} - \text{LIM}^r x.$$

Therefore, the inclusions (2.17)–(2.19) ensure that (2.16) holds i.e.,

$$\mathcal{I} - \text{LIM}^r x = \bigcap_{c \in \mathcal{I}(\Gamma_x)} \overline{B}_r(c) = \{x_* \in \mathbb{R}^n : \mathcal{I}(\Gamma_x) \subseteq \overline{B}_r(x_*)\}. \blacksquare$$

EXAMPLE 2.13. Consider the sequence $x = (x_i)$ defined in (2.4) and let \mathcal{I} be the \mathcal{I}_d of \mathbb{N} . Then we have

$$\mathcal{I}(\Gamma_x) = \{-1, 1\}.$$

It follows from (2.16) that

$$\mathcal{I} - LIM^r x = \overline{B}_r(-1) \cap \overline{B}_r(1).$$

We finally complete this work by giving the relation between the set of \mathcal{I} -cluster points and the set of rough \mathcal{I} -limit points of a sequence.

THEOREM 2.14. Let $\mathcal{I} \subset 2^{\mathbb{N}}$ be an admissible ideal and $x = (x_i)$ be an \mathcal{I} -bounded sequence. If $r \geq diam(\mathcal{I}(\Gamma_x))$, then we have $\mathcal{I}(\Gamma_x) \subseteq \mathcal{I} - \text{LIM}^r x$.

Proof. Let $c \notin \mathcal{I} - \text{LIM}^r x$. Then there exists an $\varepsilon > 0$ such that

$$(2.20) \{i \in \mathbb{N} : ||x_i - c|| \ge r + \varepsilon\} \notin \mathcal{I}.$$

Since $x = (x_i)$ is \mathcal{I} -bounded and from the inequality (2.20), there exists an \mathcal{I} -cluster point c_1 such that

$$||c - c_1|| > r + \varepsilon_1,$$

where $\varepsilon_1 := \frac{\varepsilon}{2}$. So we get

$$diam(\mathcal{I}(\Gamma_x)) > r + \varepsilon_1,$$

which proves the theorem.

The converse of this theorem is also true, i.e., if $\mathcal{I}(\Gamma_x) \subseteq \mathcal{I} - \text{LIM}^r x$, then we have $r \geq diam(\mathcal{I}(\Gamma_x))$.

Acknowledgments. The authors are grateful to the referees for their corrections and suggestions, which have greatly improved the readability of the paper.

References

- S. Aytar, Rough statistical convergence, Numer. Funct. Anal. Optim. 29(3-4) (2008), 291-303.
- [2] S. Aytar, The rough limit set and the core of a real requence, Numer. Funct. Anal. Optim. 29(3-4) (2008), 283-290.
- [3] K. Demirci, I-limit superior and limit inferior, Math. Commun. 6 (2001), 165–172.
- [4] H. Fast, Sur la convergenc statistique, Colloq. Math. 2 (1951), 241–244.
- [5] J. A. Fridy, On statistical convergence, Analysis 5 (1985), 301–313.
- [6] P. Kostyrko, T. Salat, W. Wilczyński, I-convergence, Real Anal. Exchange 26(2) (2000), 669–686.

- [7] P. Kostyrko, M. Macaj, T. Salat, M. Sleziak, I-convergence and extremal I-limit points, Math. Slovaca 55 (2005), 443–464.
- [8] H. I. Miller, A measure theoretical subsequence characterization of statistical convergence, Trans. Amer. Math. Soc. 347 (1995), 1811–1819.
- [9] F. Nuray, W. H. Ruckle, Generalized statistical convergence and convergence free spaces, J. Math. Anal. Appl. 245 (2000), 513–527.
- [10] H. X. Phu, Rough convergence in normed linear spaces, Numer. Funct. Anal. Optim. 22 (2001), 199–222.
- [11] H. X. Phu, Rough continuity of linear operators, Numer. Funct. Anal. Optim. 23 (2002), 139–146.
- [12] H. X. Phu, Rough convergence in infinite dimensional normed spaces, Numer. Funct. Anal. Optim. 24 (2003), 285–301.
- [13] T. Šalát, B. C. Tripathy, M. Ziman, On I-convergence field, Ital. J. Pure Appl. Math. 17 (2005), 45–54.
- [14] T. Šalát, On statistically convergent sequences of real numbers, Math. Slovaca 30 (1980), 139–150.
- [15] I. J. Schoenberg, The integrability of certain functions and related summability methods, Amer. Math. Monthly 66 (1959), 361–375.

E. Dündar

DEPARTMENT OF MATHEMATICS AFYON KOCATEPE UNIVERSITY 0320-AFYONKARAHISAR, TURKEY

E-mail: erdincdundar79@gmail.com, edundar@aku.edu.tr

C. Çakan

INÖNÜ UNIVERSITY FACULTY OF EDUCATION 44280-MALATYA, TURKEY E-mail: ccakan@inonu.edu.tr

Received February 11, 2013; revised version September 3, 2013.

Communicated by Z. Pasternak-Winiarski.