Wijsman \mathcal{I}_2 -Invariant Convergence of Double Sequences of Sets

Şükrü TORTOP and Erdinç DÜNDAR

Department of Mathematics, Afyon Kocatepe University, 03200 Afyonkarahisar, Turkey.

> ICAA-2016 July 12–15, 2016

2 Introduction

Optimizione and Notations

🕘 Main Result

5 References

- 4 回 ト - 4 回 ト

3

Abstract

In this paper, we study the concepts of Wijsman invariant convergence, Wijsman invariant statistical convergence, Wijsman \mathcal{I}_2 -invariant convergence $(\mathcal{I}_{W_2}^{\sigma})$, Wijsman \mathcal{I}_2^* -invariant convergence $(\mathcal{I}_{W_2}^{\sigma})$, Wijsman *p*-strongly invariant convergence $([W_2V_{\sigma}]_p)$ of double sequence of sets and investigate the relationships among Wijsman invariant convergence, $[W_2V_{\sigma}]_p$, $\mathcal{I}_{W_2}^{\sigma}$ and $\mathcal{I}_{W_2}^{*\sigma}$. Also, we introduce the concepts of $\mathcal{I}_{W_2}^{\sigma}$ -Cauchy double sequence and $\mathcal{I}_{W_2}^{*\sigma}$ -Cauchy double sequence of sets.

Introduction

Throughout the paper \mathbb{N} denotes the set of all positive integers and \mathbb{R} the set of all real numbers. The concept of convergence of a sequence of real numbers has been extended to statistical convergence independently by Fast [6] and Schoenberg [30]. This concept was extended to the double sequences by Mursaleen and Edely [12].

Nuray and Ruckle [17] indepedently introduced the same with another name generalized statistical convergence. The idea of \mathcal{I} -convergence was introduced by Kostyrko, Šalát and Wilczyński [8] as a generalization of statistical convergence which is based on the structure of the ideal \mathcal{I} of subset of \mathbb{N} . Das et al. [4] introduced the concept of \mathcal{I} -convergence of double sequences in a metric space and studied some properties of this convergence. A lot of development have been made in this area after the works of [5, 9, 15].

Introduction

Nuray and Rhoades [16] extended the notion of convergence of set sequences to statistical convergence and gave some basic theorems. Ulusu and Nuray [35] defined the Wijsman lacunary statistical convergence of set sequences and considered its relation with Wiijsman statistical convergence, which was defined by Nuray and Rhoades. Kişi and Nuray [7] introduced a new convergence notion, for sequences of sets, which is called Wijsman \mathcal{I} -convergence. Also, the concept of convergence of sequences has been extended to convergence, statistical convergence and ideal convergence of sequences of sets by several authors (see, [31, 32, 33, 34, 36, 37, 38, 39]).

Introduction

Several authors including Raimi [25], Schaefer [29], Mursaleen [14], Savaş [26], Pancaroğlu and Nuray [22], and others have studied invariant convergent sequences (see, [11, 19]). The concept of strongly σ -convergence was defined by Mursaleen [13]. Savaş and Nuray [28] introduced the concepts of σ -statistical convergence and lacunary σ -statistical convergence and gave some inclusion relations.

Introduction

Recently, the concept of strong σ -convergence was generalized by Savaş [26]. Nuray et al. [20] defined the concepts of σ -uniform density of subsets A of the set \mathbb{N} , \mathcal{I}_{σ} -convergence and investigated relationships between \mathcal{I}_{σ} -convergence and invariant convergence also \mathcal{I}_{σ} -convergence and $[V_{\sigma}]_p$ -convergence. Ulusu and Nuray [21] investigated lacunary \mathcal{I} -invariant convergence and lacunary \mathcal{I} -invariant Cauchy sequence of real numbers. Pancaroğlu et al. [24] studied Wijsman \mathcal{I} -invariant convergence of sequences of sets.

Definitions and Notations

A family of sets $\mathcal{I} \subseteq 2^{\mathbb{N}}$ is called an ideal if and only if (*i*) $\emptyset \in \mathcal{I}$, (*ii*) For each $A, B \in \mathcal{I}$ we have $A \cup B \in \mathcal{I}$, (*iii*) For each $A \in \mathcal{I}$ and each $B \subseteq A$ we have $B \in \mathcal{I}$. An ideal is called nontrivial if $\mathbb{N} \notin \mathcal{I}$ and nontrivial ideal is called admissible if $\{n\} \in \mathcal{I}$ for each $n \in \mathbb{N}$. A family of sets $\mathcal{F} \subseteq 2^{\mathbb{N}}$ is called a filter if and only if (*i*) $\emptyset \notin \mathcal{F}$, (*ii*) For each $A, B \in \mathcal{F}$ we have $A \cap B \in \mathcal{F}$, (*iii*) For each $A \in \mathcal{F}$ and each $B \supseteq A$ we have $B \in \mathcal{F}$.

Definitions and Notations

Proposition 1

([8]) \mathcal{I} is nontrivial ideal in \mathbb{N} if and only if $\mathcal{F}(\mathcal{I}) = \{M \subset \mathbb{N} : (\exists A \in \mathcal{I})(M = \mathbb{N} \setminus A)\}$ is a filter in \mathbb{N} .

A nontrivial ideal \mathcal{I}_2 of $\mathbb{N} \times \mathbb{N}$ is called strongly admissible ideal if $\{i\} \times \mathbb{N}$ and $\mathbb{N} \times \{i\}$ belong to \mathcal{I}_2 for each $i \in N$. Throughout the paper we take \mathcal{I}_2 as a strongly admissible ideal in $\mathbb{N} \times \mathbb{N}$. It is evident that a strongly admissible ideal is admissible also.

Definitions and Notations

 $\mathcal{I}_{2}^{0} = \{A \subset \mathbb{N} \times \mathbb{N} : (\exists m(A) \in \mathbb{N}) (i, j \ge m(A) \Rightarrow (i, j) \notin A)\}. \text{ Then } \mathcal{I}_{2}^{0} \text{ is a strongly admissible ideal and clearly an ideal } \mathcal{I}_{2} \text{ is strongly admissible if and only if } \mathcal{I}_{2}^{0} \subset \mathcal{I}_{2}. \text{ Let } (X, \rho) \text{ be a metric space. A sequence } x = (x_{mn}) \text{ in } X \text{ is said to be } \mathcal{I}_{2}\text{-convergent to } L \in X, \text{ if for any } \varepsilon > 0, \text{ } A(\varepsilon) = \{(m, n) \in \mathbb{N} \times \mathbb{N} : \rho(x_{mn}, L) \ge \varepsilon\} \in \mathcal{I}_{2}. \text{ In this case, we say that } x \text{ is } \mathcal{I}_{2}\text{-convergent and we write } \mathcal{I}_{2} - \lim_{m, n \to \infty} x_{mn} = L. \end{cases}$

Definitions and Notations

Let σ be a mapping of the set of positive integers into itself. A continuous linear functional ϕ on ℓ_{∞} , the space of real bounded sequences, is said to be an invariant mean or a σ -mean if and only if

•
$$\phi(x) \ge 0$$
, when the sequence $x = (x_n)$ has $x_n \ge 0$ for all n ,

②
$$\phi(e) = 1$$
, where $e = (1, 1, 1, ...)$, and

•
$$\phi(x_{\sigma(n)}) = \phi(x_n)$$
 for all $x \in \ell_{\infty}$

Definitions and Notations

The mappings σ are one-to-one and such that $\sigma^m(n) \neq n$ for all positive integers n and m, where $\sigma^m(n)$ denotes the mth iterate of the mapping σ at n. Thus ϕ extends the limit functional on c, the space of convergent sequences, in the sense that $\phi(x) = \lim x$ for all $x \in c$. In the case σ is translation mappings $\sigma(n) = n + 1$, the σ -mean is often called a Banach limit and V_{σ} , the set of bounded sequences all of whose invariant means are equal, is the set of almost convergent sequences [10]. It can be shown [27] that

$$V_{\sigma} = \Big\{ x = (x_n) \in \ell_{\infty} : \lim_{m \to \infty} \frac{1}{m} \sum_{k=1}^m x_{\sigma^k(n)} = L \text{ uniformly in } n \Big\}.$$

Definitions and Notations

A bounded sequence $(x = x_k)$ is said to be strongly σ -convergent to L if

$$\lim_{n\to\infty}\frac{1}{n}\sum_{k=0}^{n-1}|x_{\sigma^k(m)}-L|=0 \text{ uniformly in } m$$

and in this case, we write $x_k \to L[V_\sigma]$. By $[V_\sigma]$, we denote the set of all strongly σ -convergent sequences.

In the case $\sigma(n) = n + 1$, the space $[V_{\sigma}]$ is the set of strongly almost convergent sequences $[\hat{c}]$.

Definitions and Notations

The concept of strong $\sigma\text{-convergence}$ was generalized by Savaş [26] as below:

$$[V_{\sigma}]_{\rho} = \Big\{ x = (x_k) : \lim_{m \to \infty} \frac{1}{m} \sum_{k=1}^{m} |x_{\sigma^k(n)} - L|^{\rho} = 0 \text{ uniformly in } n \Big\},$$

where 0 . If <math>p = 1, then $[V_{\sigma}]_p = [V_{\sigma}]$. It is known that $[V_{\sigma}]_p \subset \ell_{\infty}$.

글 > - < 글 >

Definitions and Notations

A sequence $x = (x_k)$ is σ -statistically convergent to L if for every $\varepsilon > 0$,

$$\lim_{m\to\infty}\frac{1}{m}\Big|\big\{k\leq m:|x_{\sigma^k(n)}-L|\geq\varepsilon\big\}\Big|=0,$$

uniformly in *n*. In this case we write $S_{\sigma} - \lim x = L$ or $x_k \to L(S_{\sigma})$.

医下口 医下

Definitions and Notations

Let $A \subseteq \mathbb{N}$ and

$$s_n := \min_m \left| A \cap \left\{ \sigma(m), \sigma^2(m), ..., \sigma^n(m) \right\} \right|$$

and

$$S_n := \max_m \left| A \cap \left\{ \sigma(m), \sigma^2(m), ..., \sigma^n(m) \right\} \right|.$$

If the following limits exist

$$\underline{V}(A) := \lim_{n \to \infty} \frac{s_n}{n}, \quad \overline{V}(A) := \lim_{n \to \infty} \frac{S_n}{n}$$

then they are called a lower and an upper σ -uniform density of the set A, respectively. If $\underline{V}(A) = \overline{V}(A)$, then $V(A) = \underline{V}(A) = \overline{V}(A)$ is called the σ -uniform density of A.

Definitions and Notations

Denote by \mathcal{I}_{σ} the class of all $A \subseteq \mathbb{N}$ with V(A) = 0.

A sequence (x_k) is said to be \mathcal{I}_{σ} -convergent to the number L if for every $\varepsilon > 0$ $A_{\varepsilon} = \{k : |x_k - L| \ge \varepsilon\} \in \mathcal{I}_{\sigma}$, that is, $V(A_{\varepsilon}) = 0$. In this case, we write $\mathcal{I}_{\sigma} - \lim x_k = L$.

Let (X, ρ) be a separable metric space. For any point $x \in X$ and any non-empty subset A of X, we define the distance from x to A by

$$d(x,A) = \inf_{a \in A} \rho(x,a).$$

Definitions and Notations

Throughout the paper, we let (X, ρ) be a separable metric space and A, A_{kj} be any non-empty closed subsets of X. A double sequence $\{A_{kj}\}$ is Wijsman convergent to A if

$$P - \lim_{k,j \to \infty} d(x, A_{kj}) = d(x, A)$$
 or $\lim_{k,j \to \infty} d(x, A_{kj}) = d(x, A)$

for each $x \in X$. In this case, we write $W_2 - \lim A_{kj} = A$. A double sequence of sets $\{A_{kj}\}$ is \mathcal{I}_{W_2} -convergent to A if for each $x \in X$ and for every $\varepsilon > 0$, $\{(k, j) \in \mathbb{N} \times \mathbb{N} : |d(x, A_{kj}) - d(x, A)| \ge \varepsilon\} \in \mathcal{I}_2$. In this case, we write $\mathcal{I}_{W_2} - \lim_{k, j \to \infty} d(x, A_{kj}) = d(x, A)$.

Definitions and Notations

A double sequence of sets $\{A_{kj}\}$ is $\mathcal{I}_{W_2}^*$ -convergent to A if there exists a set $M_2 \in \mathcal{F}(\mathcal{I}_2)$ (i.e., $\mathbb{N} \times \mathbb{N} \setminus M_2 = H \in \mathcal{I}_2$) such that for each $x \in X$

$$\lim_{\substack{k,j\to\infty\\(k,j)\in M_2}} d(x,A_{kj}) = d(x,A).$$

In this case, we write $\mathcal{I}_{W_2}^* - \lim_{k,j\to\infty} d(x, A_{kj}) = d(x, A)$. A double sequence of sets $\{A_{kj}\}$ is \mathcal{I}_2 -Cauchy sequence if for each $x \in X$ and for every $\varepsilon > 0$, there exists (p, q) in $\mathbb{N} \times \mathbb{N}$ such that $\{(k, j) \in \mathbb{N} \times \mathbb{N} : |d(x, A_{kj}) - d(x, A_{pq})| \ge \varepsilon\} \in \mathcal{I}_2$.

Definitions and Notations

A double sequence of sets $\{A_{kj}\}$ is $\mathcal{I}_{W_2}^*$ -Cauchy if there exists a set $M_2 \in \mathcal{F}(\mathcal{I}_2)$ $(\mathbb{N} \times \mathbb{N} \setminus M_2 = H \in \mathcal{I}_2)$ such that for each $x \in X$, $\lim_{\substack{k,j,p,q \to \infty}} |d(x, A_{kj}) - d(x, A_{pq})| = 0$, for $(k, j), (p, q) \in M_2$. A double sequence $\{A_{kj}\}$ is said to be bounded if $\sup_{k,j} d(x, A_{kj}) < \infty$, for each $x \in X$. The set of all bounded double sequences of sets will be denoted by L^2_{∞} .

Definitions and Notations

A sequence $\{A_k\}$ is said to be Wijsman invariant convergent to A if for each $x \in X$,

$$\lim_{n\to\infty}\frac{1}{n}\sum_{k=1}^n d(x,A_{\sigma^k(m)})=d(x,A), \text{ uniformly in m.}$$

A sequence $\{A_k\}$ is said to be Wijsman strongly invariant convergent to A if for each $x \in X$,

$$\lim_{n\to\infty}\frac{1}{n}\sum_{k=1}^n |d(x,A_{\sigma^k(m)})-d(x,A)|=0, \text{ uniformly in m.}$$

A sequence $\{A_k\}$ is said to be Wijsman invariant statistical convergent to A if for every $\varepsilon > 0$ and for each $x \in X$,

$$\lim_{n\to\infty}\frac{1}{n}|\{0\leq k\leq n:|d(x,A_{\sigma^k(m)})-d(x,A)|\geq\varepsilon\}|=0,$$

uniformly in m.

Definitions and Notations

A sequence $\{A_k\}$ is said to be Wijsman *p*-strongly invariant convergent to A if for each $x \in X$,

$$\lim_{n\to\infty}\frac{1}{n}\sum_{k=1}^{n}|d(x,A_{\sigma^{k}(m)})-d(x,A)|^{p}=0, \text{ uniformly in m},$$

where 0 . $A sequence <math>\{A_k\}$ is said to be Wijsman \mathcal{I} -invariant convergent or \mathcal{I}_{σ}^W -convergent to A if for every $\varepsilon > 0$, $A_{\varepsilon} = \{k : |d(x, A_k) - d(x, A)| \ge \varepsilon\} \in \mathcal{I}_{\sigma}$ that is, $V(A_{\varepsilon}) = 0$. In this case, we write $A_k \to A(\mathcal{I}_{\sigma}^W)$ and the set of all Wijsman \mathcal{I} -invariant convergent sequences of sets will be denoted \mathcal{I}_{σ}^W .

Definitions and Notations

An admissible ideal $\mathcal{I}_2 \subset 2^{\mathbb{N}\times\mathbb{N}}$ satisfies the property (AP2) if for every countable family of mutually disjoint sets $\{E_1, E_2, ...\}$ belonging to \mathcal{I}_2 , there exists a countable family of sets $\{F_1, F_2, ...\}$ such that $E_j \Delta F_j \in \mathcal{I}_2^0$, i.e., $E_j \Delta F_j$ is included in the finite union of rows and columns in $\mathbb{N} \times \mathbb{N}$ for each $j \in \mathbb{N}$ and $F = \bigcup_{i=1}^{\infty} F_j \in \mathcal{I}_2$ (hence $F_j \in \mathcal{I}_2$ for each $j \in \mathbb{N}$).

Main Result

In this section, we study the concepts of Wijsman invariant convergence, Wijsman invariant statistical convergence, Wijsman \mathcal{I}_2 -invariant convergence, Wijsman \mathcal{I}_2 -invariant convergence, Wijsman \mathcal{I}_2^* -invariant convergence, Wijsman p-strongly invariant convergence double sequence of sets and investigate the relationships among Wijsman invariant convergence, $[W_2 V_\sigma]_p$, $\mathcal{I}_{W_2}^{\sigma}$ and $\mathcal{I}_{W_2}^{*\sigma}$. Also, we introduce the concepts of $\mathcal{I}_{W_2}^{\sigma}$ -Cauchy double sequence and $\mathcal{I}_{W_2}^{*\sigma}$ -Cauchy double sequence of sets.

Main Result

Definition 1

Let $A \subseteq \mathbb{N} \times \mathbb{N}$ and

$$s_{mn} := \min_{k,j} \left| A \cap \left\{ \left(\sigma(k), \sigma(j) \right), \left(\sigma^2(k), \sigma^2(j) \right), ..., \left(\sigma^m(k), \sigma^n(j) \right) \right\} \right|$$

and

$$S_{mn} := \max_{k,j} \left| A \cap \left\{ \left(\sigma(k), \sigma(j) \right), \left(\sigma^2(k), \sigma^2(j) \right), ..., \left(\sigma^m(k), \sigma^n(j) \right) \right\} \right|.$$

If the following limits exists

$$\underline{V_2}(A) := \lim_{m,n\to\infty} \frac{s_{mn}}{mn}, \qquad \overline{V_2}(A) := \lim_{m,n\to\infty} \frac{S_{mn}}{mn}$$

then they are called a lower and an upper σ -uniform density of the set A, respectively. If $\underline{V_2}(A) = \overline{V_2}(A)$, then $V_2(A) = \underline{V_2}(A) = \overline{V_2}(A)$ is called the σ -uniform density of A.

Main Result

Definition 2

A double sequence $\{A_{kj}\}$ is said to be Wijsman invariant convergent to A if for each $x \in X$,

$$\lim_{m,n\to\infty}\frac{1}{mn}\sum_{k,j=1,1}^{m,n}d(x,A_{\sigma^k(s),\sigma^j(t)})=d(x,A), \text{ uniformly in s,t.}$$

Main Result

Definition 3

A double sequence $\{A_{kj}\}$ is said to be Wijsman \mathcal{I}_2 -invariant convergent or $\mathcal{I}_{W_2}^{\sigma}$ -convergent to A, if for every $\varepsilon > 0$,

$$\mathsf{A}(arepsilon, x) = \{(k, j) : |\mathsf{d}(x, A_{kj}) - \mathsf{d}(x, A)| \ge arepsilon\} \in \mathcal{I}_2^\sigma$$

that is, $V_2(A(\varepsilon, x)) = 0$. In this case, we write $A_{kj} \to A(\mathcal{I}_{W_2}^{\sigma})$ and the set of all Wijsman \mathcal{I}_2 -invariant convergent double sequences of sets will be denoted by $\mathcal{I}_{W_2}^{\sigma}$.

4 E 5 4 E 5

Main Result

Definition 4

Let $\mathcal{I}_2^{\sigma} \subset 2^{\mathbb{N} \times \mathbb{N}}$ be a strongly admissible ideal. A double sequence $\{A_{kj}\}$ is Wijsman \mathcal{I}_2^* -invariant convergent or $\mathcal{I}_{W_2}^{*\sigma}$ -convergent to A if and only if there exists a set $M_2 \in \mathcal{F}(\mathcal{I}_2^{\sigma})$ ($\mathbb{N} \times \mathbb{N} \setminus M_2 = H \in \mathcal{I}_2^{\sigma}$) such that for each $x \in X$,

$$\lim_{\substack{k,j\to\infty\\k,j)\in M_2}} d(x,A_{kj}) = d(x,A).$$

Main Result

Theorem 5

Let $\mathcal{I}_{2}^{\sigma} \subset 2^{\mathbb{N} \times \mathbb{N}}$ be a strongly admissible ideal. If a sequence $\{A_{kj}\}$ is $\mathcal{I}_{W_{2}}^{*\sigma}$ -convergent to A, then this sequence is $\mathcal{I}_{W_{2}}^{\sigma}$ -convergent to A.

同 ト イ ヨ ト イ ヨ ト

Main Result

Proof: Since $\mathcal{I}_{W_2}^{*\sigma} - \lim_{k,j\to\infty} d(x, A_{kj}) = d(x, A)$, there exists a set $M_2 \in \mathcal{F}(\mathcal{I}_2^{\sigma})$ ($\mathbb{N} \times \mathbb{N} \setminus M_2 = H \in \mathcal{I}_2^{\sigma}$) such that for each $x \in X$,

$$\lim_{\substack{k,j\to\infty\\(k,j)\in M_2}} d(x,A_{kj}) = d(x,A).$$

医下口 医

Main Result

Let $\varepsilon > 0$. Then, there exists $k_0 \in \mathbb{N}$ such that for each $x \in X$,

$$|d(x, A_{kj}) - d(x, A)| < \varepsilon,$$

for all $(k,j) \in M_2$ and $k,j \ge k_0$. Hence, for every $\varepsilon > 0$ and each $x \in X$, we have

$$T \quad (\varepsilon, x) = \{(k, j) \in \mathbb{N} \times \mathbb{N} : |d(x, A_{kj}) - d(x, A)| \ge \varepsilon\}$$

$$\subset \quad H \cup \Big(M_2 \cap \big((\{1, 2, ..., (k_0 - 1)\} \times \mathbb{N}) \cup (\mathbb{N} \times \{1, 2, ..., (k_0 - 1)\})\big)\Big).$$

ヨン・イヨン

Main Result

Since $\mathcal{I}_2^{\sigma} \subset 2^{\mathbb{N} \times \mathbb{N}}$ is a strongly admissible ideal, $H \cup \left(M_2 \cap \left(\left(\{1, 2, ..., (k_0 - 1)\} \times \mathbb{N}\right) \cup \left(\mathbb{N} \times \{1, 2, ..., (k_0 - 1)\}\right)\right)\right) \in \mathcal{I}_2^{\sigma}$, so we have $T(\varepsilon, x) \in \mathcal{I}_2^{\sigma}$ that is $V_2(T(\varepsilon, x)) = 0$. Hence, $\mathcal{I}_{W_2}^{\sigma} - \lim_{k \to \infty} d(x, A_{kj}) = d(x, A)$.

4 E 5 4 E 5

Main Result

Theorem 6

Let $\mathcal{I}_{2}^{\sigma} \subset 2^{\mathbb{N} \times \mathbb{N}}$ be a strongly admissible ideal with property (AP2). If $\{A_{kj}\}$ is $\mathcal{I}_{W_{2}}^{\sigma}$ -convergent to A, then $\{A_{kj}\}$ is $\mathcal{I}_{W_{2}}^{*\sigma}$ -convergent to A.

同 ト イ ヨ ト イ ヨ ト

Main Result

Proof: Suppose that \mathcal{I}_2^{σ} satisfies property (AP2). Let $\{A_{kj}\}$ is $\mathcal{I}_{W_2}^{\sigma}$ -convergent to A. Then,

$$T(\varepsilon, x) = T_{\varepsilon} = \{(k, j) \in \mathbb{N} \times \mathbb{N} : |d(x, A_{kj}) - d(x, A)| \ge \varepsilon\} \in \mathcal{I}_{2}^{\sigma}$$

$$(4.1)$$

for every $\varepsilon > 0$ and for each $x \in X$. Put

$$T_1 = T(1, x) = \{(k, j) \in \mathbb{N} \times \mathbb{N} : |d(x, A_{kj}) - d(x, A)| \ge 1\}$$

and

$$T_{v} = T(v, x) = \left\{ (k, j) \in \mathbb{N} \times \mathbb{N} : \frac{1}{v} \leq |d(x, A_{kj}) - d(x, A)| < \frac{1}{v - 1} \right\}$$

for $v \geq 2$ and $v \in \mathbb{N}$.

< 回 > < 回 > < 回 >

-

Main Result

Obviously $T_i \cap T_j = \emptyset$ for $i \neq j$ and $T_i \in \mathcal{I}_2^{\sigma}$ for each $i \in \mathbb{N}$. By property (*AP*2) there exits a sequence of sets $\{E_v\}_{v\in\mathbb{N}}$ such that $T_i\Delta E_i$ is included in finite union of rows and columns in $\mathbb{N} \times \mathbb{N}$ for each i and $E = \bigcup_{i=1}^{\infty} E_i \in \mathcal{I}_2^{\sigma}$. We shall prove that for $M_2 = \mathbb{N} \times \mathbb{N} \setminus E$ we have

$$\lim_{\substack{k,j\to\infty\\(k,j)\in M_2}} d(x,A_{kj}) = d(x,A).$$

Main Result

Let $\eta > 0$ be given. Choose $v \in \mathbb{N}$ such that $\frac{1}{v} < \eta$. Then,

$$\{(k,j)\in\mathbb{N}\times\mathbb{N}:|d(x,A_{kj})-d(x,A)|\geq\eta\}\subset\bigcup_{i=1}^{\nu}T_{i}$$

(日) (日) (日)

Main Result

Since $T_i \Delta E_i$, i = 1, 2, ... are included in finite union of rows and columns, there exists $n_0 \in \mathbb{N}$ such that

$$\left(\bigcup_{i=1}^{\nu} T_i\right) \cap \left\{(k,j) : k \ge n_0 \land j \ge n_0\right\} = \left(\bigcup_{i=1}^{\nu} E_i\right) \cap \left\{(k,j) : k \ge n_0 \land j \ge n_0\right\}.$$
(4.2)

If
$$k, j > n_0$$
 and $(k, j) \notin E$, then
 $(k, j) \notin \bigcup_{i=1}^{v} E_i$ and $(k, j) \notin \bigcup_{i=1}^{v} T_i$.

This implies that

$$\left|d\left(x,A_{kj}
ight)-d\left(x,A
ight)
ight|<rac{1}{v}<\eta.$$

Hence, we have

$$\lim_{\substack{k,j\to\infty\\(k,j)\in M_2}} d(x,A_{kj}) = d(x,A).$$

Main Result

Definition 7

A double sequence $\{A_{kj}\}$ is said to be Wijsman \mathcal{I}_2 -invariant Cauchy sequence or $\mathcal{I}_{W_2}^{\sigma}$ -Cauchy sequence, if for every $\varepsilon > 0$ and for each $x \in X$, there exist numbers $r = r(\varepsilon, x), s = s(\varepsilon, x) \in \mathbb{N}$ such that

$$A(\varepsilon, x) = \left\{ (k, j) : |d(x, A_{kj}) - d(x, A_{rs})| \ge \varepsilon \right\} \in \mathcal{I}_2^{\sigma},$$

that is, $V_2(A(\varepsilon, x)) = 0$.

医下颌 医下

Main Result

Definition 8

A double sequence $\{A_{kj}\}$ is $\mathcal{I}_{W_2}^{*\sigma}$ -Cauchy if there exists a set $M_2 \in \mathcal{F}(\mathcal{I}_2^{\sigma})$ (i.e., $\mathbb{N} \times \mathbb{N} \setminus M_2 = H \in \mathcal{I}_2^{\sigma}$) such that for every $x \in X$ and $(k, j), (p, q) \in M_2$

$$\lim_{k,j,p,q\to\infty} |d(x,A_{kj})-d(x,A_{pq})|=0.$$

We give following theorems which show relationships between $\mathcal{I}_{W_2}^{\sigma}$ -convergence, $\mathcal{I}_{W_2}^{\sigma}$ -Cauchy sequence and $\mathcal{I}_{W_2}^{*\sigma}$ -Cauchy sequence. The proof of them are similar to the proof of Theorems in [5, 18], so we omit them.

Main Result

Theorem 9

If a double sequence $\{A_{kj}\}$ is $\mathcal{I}_{W_2}^{\sigma}$ -convergent, then $\{A_{kj}\}$ is an $\mathcal{I}_{W_2}^{\sigma}$ -Cauchy double sequence of sets.

Theorem 10

If a double sequence $\{A_{kj}\}$ is $\mathcal{I}_{W_2}^{*\sigma}$ -Cauchy double sequence, then $\{A_{kj}\}$ is $\mathcal{I}_{W_2}^{\sigma}$ -Cauchy double sequence of sets.

Theorem 11

Let \mathcal{I}_{2}^{σ} has property (AP2). Then, the concepts $\mathcal{I}_{W_{2}}^{\sigma}$ -Cauchy sequence and $\mathcal{I}_{W_{2}}^{*\sigma}$ -Cauchy sequence of sets coincides.

< 回 > < 三 > < 三 >

Main Result

Definition 12

A double sequence $\{A_{kj}\}$ is said to be Wijsman strongly invariant convergent to A, if for each $x \in X$,

$$\lim_{m,n\to\infty}\frac{1}{mn}\sum_{k,j=1,1}^{m,n}\left|d(x,A_{\sigma^k(s),\sigma^j(t)})-d(x,A)\right|=0, \text{ uniformly in s,t.}$$

3 N

Main Result

Definition 13

A double sequence $\{A_{kj}\}$ is said to be Wijsman *p*-strongly invariant convergent to *A*, if for each $x \in X$,

$$\lim_{m,n\to\infty}\frac{1}{mn}\sum_{k,j=1,1}^{m,n}\left|d(x,A_{\sigma^k(s),\sigma^j(t)})-d(x,A)\right|^p=0, \text{ uniformly in s,t.}$$

where $0 . In this case, we write <math>A_k \to A[W_2V_{\sigma}]_p$ and the set of all Wijsman *p*-strongly invariant convergent sequences of sets will be denoted by $[W_2V_{\sigma}]_p$.

Main Result

Theorem 14

Let $\{A_{kj}\}$ is bounded sequence. If $\{A_{kj}\}$ is $\mathcal{I}_{W_2}^{\sigma}$ -convergent to A, then $\{A_{kj}\}$ is Wijsman invariant convergent to A.

伺 と く ヨ と く ヨ と

Main Result

Proof: Let $m, n \in \mathbb{N}$ be arbitrary and $\varepsilon > 0$. For each $x \in X$, we estimate

$$u(s,t,m,n,x) = \left|\frac{1}{mn}\sum_{k,j=1,1}^{m,n}d(x,A_{\sigma^k(s),\sigma^j(t)})-d(x,A)\right|.$$

Then, for each $x \in X$ we have

$$u(s, t, m, n, x) \leq u^{1}(s, t, m, n, x) + u^{2}(s, t, m, n, x)$$

-

Main Result

where

$$u^{1}(s,t,m,n,x) = \frac{1}{mn} \sum_{\substack{k,j=1,1\\ |d(x,A_{\sigma^{k}(s),\sigma^{j}(t)}) - d(x,A)| \ge \varepsilon}}^{m,n} |d(x,A_{\sigma^{k}(s),\sigma^{j}(t)}) - d(x,A)|$$

and

$$u^{2}(s, t, m, n, x) = \frac{1}{mn} \sum_{\substack{k, j = 1, 1 \\ |d(x, A_{\sigma^{k}(s), \sigma^{j}(t)}) - d(x, A)| < \varepsilon}}^{m, n} |d(x, A_{\sigma^{k}(s), \sigma^{j}(t)}) - d(x, A)|.$$

<ロ> <四> <四> <日> <日> <日</p>

æ

Main Result

Therefore, we have

$$u^2(s,t,m,n,x) < \varepsilon,$$

for each $x \in X$ and for every s, t = 1, 2, The boundedness of $\{A_{kj}\}$ implies that there exists L > 0 such that

$$|d(x,A_{\sigma^k(s),\sigma^j(t)})-d(x,A)|\leq L, \hspace{1em} (k,s,j,t=1,2,\ldots),$$

then this implies that

$$u^{1}(s, t, m, n, x) \leq \frac{L}{mn} |\{1 \leq k \leq m, 1 \leq j \leq n : |d(x, A_{\sigma^{k}(s), \sigma^{j}(t)}) - d(x, A)| \geq \varepsilon\}|$$

$$\leq L \frac{\max_{s,t} |\{1 \leq k \leq m, 1 \leq j \leq n : |d(x, A_{\sigma^{k}(s), \sigma^{j}(t)}) - d(x, A)| \geq \varepsilon\}|}{mn}$$

$$= L \frac{S_{mn}}{mn}.$$

Hence $\{A_{kj}\}$ is Wijsman invariant convergent to A_{kj} .

Main Result

Theorem 15

Let $\mathcal{I}_{2}^{\sigma} \subset 2^{\mathbb{N} \times \mathbb{N}}$ be a strongly admissible ideal and 0 . $(i) If <math>A_{kj} \to A([W_2V_{\sigma}]_p)$, then $A_{kj} \to A(\mathcal{I}_{W_2}^{\sigma})$. (ii) If $\{A_{kj}\} \in L_{\infty}^2$ and $A_{kj} \to A(\mathcal{I}_{W_2}^{\sigma})$, then $A_{kj} \to A([W_2V_{\sigma}]_p)$. (iii) If $\{A_{kj}\} \in L_{\infty}^2$, then $\{A_{kj}\}$ is $\mathcal{I}_{W_2}^{\sigma}$ -convergent to A if and

only if $A_{kj} \to A([W_2V_\sigma]_p)$.

4 E 6 4 E 6

Main Result

(i): Assume that $A_{kj} \rightarrow A([W_2V_{\sigma}]_p)$, for every $\varepsilon > 0$ and for each $x \in X$. Then, we can write

$$\begin{split} \sum_{k,j=1,1}^{m,n} & \left| d(x,A_{\sigma^k(s),\sigma^j(t)}) - d(x,A) \right|^p \\ \geq & \sum_{\substack{k,j=1,1\\ |d(x,A_{\sigma^k(s),\sigma^j(t)}) - d(x,A)| \ge \varepsilon}}^{m,n} & \left| d(x,A_{\sigma^k(s),\sigma^j(t)}) - d(x,A) \right|^p \\ \geq & \varepsilon^p |\{k \le m, j \le n : |d(x,A_{\sigma^k(s),\sigma^j(t)}) - d(x,A)| \ge \varepsilon\}| \\ \geq & \varepsilon^p \max_{s,t} |\{k \le m, j \le n : |d(x,A_{\sigma^k(s),\sigma^j(t)}) - d(x,A)| \ge \varepsilon\}| \end{split}$$

A >

∃→ < ∃→</p>

Main Result

and

$$\begin{aligned} &\frac{1}{mn} \sum_{k,j=1,1}^{m,n} \left| d(x, A_{\sigma^k(s), \sigma^j(t)}) - d(x, A) \right|^p \\ &\geq \varepsilon^p \cdot \frac{\max_{s,t} \left| \{k \leq m, j \leq n : \left| d(x, A_{\sigma^k(s), \sigma^j(t)}) - d(x, A) \right| \geq \varepsilon \} \right|}{mn} \\ &= \varepsilon^p \frac{S_{mn}}{mn} \end{aligned}$$

<ロ> <四> <四> <日> <日> <日</p>

æ

Main Result

for every $s, t = 1, 2, \ldots$. This implies

$$\lim_{m,n\to\infty}\frac{S_{mn}}{mn}=0$$

and so $\{A_{kj}\}$ is $(\mathcal{I}_{W_2}^{\sigma})$ -convergent to A.

∃ ► < ∃ ►</p>

Main Result

(ii): Suppose that $\{A_{kj}\} \in L^2_{\infty}$ and $A_{kj} \to A(\mathcal{I}^{\sigma}_{W_2})$. Let $0 and <math>\varepsilon > 0$. By assumption we have $V_2(A_{\varepsilon}) = 0$. Since $\{A_{kj}\}$ is bounded, $\{A_{kj}\}$ implies that there exists L > 0 such that for each $x \in X$,

$$|d(x, A_{\sigma^k(s), \sigma^j(t)}) - d(x, A)| \le L$$

for all k, s, j and t.

Main Result

Then, we have

$$\begin{aligned} &\frac{1}{mn}\sum_{k,j=1,1}^{m,n} \left| d(x,A_{\sigma^{k}(s),\sigma^{j}(t)}) - d(x,A) \right|^{p} \\ &= \frac{1}{mn}\sum_{\substack{k,j=1,1\\|d(x,A_{\sigma^{k}(s),\sigma^{j}(t)}) - d(x,A)| \geq \varepsilon}}^{m,n} |d(x,A_{\sigma^{k}(s),\sigma^{j}(t)}) - d(x,A)|^{p} \\ &+ \frac{1}{mn}\sum_{\substack{k,j=1,1\\|d(x,A_{\sigma^{k}(s),\sigma^{j}(t)}) - d(x,A)| < \varepsilon}}^{m,n} |d(x,A_{\sigma^{k}(s),\sigma^{j}(t)}) - d(x,A)|^{p} \\ &\leq L\frac{\max_{s,t} \left| \{k \leq m, j \leq n : |d(x,A_{\sigma^{k}(s),\sigma^{j}(t)}) - d(x,A)| \geq \varepsilon \} \right|}{mn} + \varepsilon^{p} \\ &\leq L\frac{S_{mn}}{mn} + \varepsilon^{p}, \end{aligned}$$

Main Result

for each $x \in X$ we obtain

$$\lim_{m,n\to\infty}\frac{1}{mn}\sum_{k,j=1,1}^{m,n}\left|d(x,A_{\sigma^k(s),\sigma^j(t)})-d(x,A)\right|^p=0, \text{ uniformly in s,t.}$$

(iii): This is immediate consequence of (i) and (ii).

∃ → < ∃</p>

Main Result

Definition 16

A double sequence $\{A_{kj}\}$ is said to be Wijsman invariant statistical convergent or W_2S_{σ} -convergent to A, if for every $\varepsilon > 0$ and for each $x \in X$,

$$\lim_{m,n\to\infty}\frac{1}{mn}|\{k\leq m,j\leq n:|d(x,A_{\sigma^k(s),\sigma^j(t)})-d(x,A)|\geq \varepsilon\}|=0,$$

uniformly in s,t.

Theorem 17

A sequence $\{A_{kj}\}$ is W_2S_{σ} -convergent to A if and only if it is $\mathcal{I}^{\sigma}_{W_2}$ -convergent to A.

・ 同 ト ・ ヨ ト ・ ヨ

References I

- M. Baronti, and P. Papini, *Convergence of sequences of sets*, In: Methods of functional analysis in approximation theory, ISNM 76, Birkhauser-Verlag, Basel, *pp. 133-155*, (1986).
- [2] G. Beer, On convergence of closed sets in a metric space and distance functions, Bull. Aust. Math. Soc. 31 (1985), 421–432.
- [3] G. Beer, Wijsman convergence: A survey, Set-Valued Var. Anal. 2 (1994), 77–94.
- [4] P. Das, P. Kostyrko, W. Wilczyński, P. Malik, *I and I*-convergence of double sequences*, Math. Slovaca, **58** (5) (2008), 605–620.
- [5] E. Dndar, B. Altay, *I*₂-convergence and *I*₂-Cauchy of double sequences, Acta Mathematica Scientia, **34**B(2) (2014), 343–353.
- [6] H. Fast, Sur la convergence statistique, Colloq. Math. 2 (1951) 241–244.

イボト イラト イラト

References II

- [7] Kişi, Ö. and Nuray, F. A new convergence for sequences of sets, Abstract and Applied Analysis, vol. 2013, Article ID 852796, 6 pages. http://dx.doi.org/10.-1155/2013/852796.
- [8] P. Kostyrko, T. Šalát, W. Wilczyński, *I-Convergence*, Real Anal. Exchange 26(2) (2000) 669–686.
- [9] V. Kumar, On I and I*-convergence of double sequences, Math. Commun. 12 (2007), 171–181.
- [10] G. Lorentz, A contribution to the theory of divergent sequences, Acta Math. 80 (1948) 167–190.
- [11] M. Mursaleen, O. H. H. Edely, On the invariant mean and statistical convergence, Appl. Math. Lett. 22 (2009) 1700–1704.
- [12] Mursaleen, O. H. H. Edely, Statistical convergence of double sequences, J. Math. Anal. Appl. 288 (2003) 223–231.

References III

- [13] M. Mursaleen, Matrix transformation between some new sequence spaces, Houston J. Math. 9 (1983) 505–509.
- [14] M. Mursaleen, On finite matrices and invariant means, Indian J. Pure and Appl. Math. 10 (1979) 457–460.
- [15] A. Nabiev, S. Pehlivan, M. Gürdal, On *I*-Cauchy sequences, Taiwanese J. Math. **11**(2) (2007) 569–5764.
- [16] F. Nuray, B. E. Rhoades, Statistical convergence of sequences of sets, Fasc. Math. 49 (2012), 87–99.
- [17] F. Nuray, W.H. Ruckle, Generalized statistical convergence and convergence free spaces, J. Math. Anal. Appl. 245 (2000), 513–527.
- [18] F. Nuray, E. Dndar, U. Ulusu, Wijsman I₂-convergence of double sequences of closed sets, Pure and Applied Mathematics Letters, 2 (2014), 35-39.

- 4 同 ト 4 ヨ ト 4 ヨ ト

References IV

- [19] F. Nuray, E. Savaş, Invariant statistical convergence and A-invariant statistical convergence, Indian J. Pure Appl. Math. 10 (1994) 267–274.
- [20] F. Nuray, H. Gök, U. Ulusu, \mathcal{I}_{σ} -convergence, Math. Commun. **16** (2011) 531–538.
- [21] U. Ulusu, F. Nuray, *Lacunary* \mathcal{I}_{σ} *-convergence*, (Under Comminication).
- [22] N. Pancaroğlu, F. Nuray, Statistical lacunary invariant summability, Theoretical Mathematics and Applications 3(2) (2013) 71–78.
- [23] N. Pancaroğlu, F. Nuray, On Invariant Statistically Convergence and Lacunary Invariant Statistically Convergence of Sequences of Sets, Progress in Applied Mathematics, 5(2) (2013), 23–29.

< 回 > < 三 > < 三 >

References V

- [24] N. Pancaroğlu, E. Dndar and F. Nuray, *Wijsman I-Invariant Convergence of Sequences of Sets*, (Under Communication).
- [25] R. A. Raimi, Invariant means and invariant matrix methods of summability, Duke Math. J. 30 (1963) 81–94.
- [26] E. Savaş, Some sequence spaces involving invariant means, Indian J. Math. 31 (1989) 1–8.
- [27] E. Savaş, Strong σ -convergent sequences, Bull. Calcutta Math. **81** (1989) 295–300.
- [28] E. Savaş, F. Nuray, On σ -statistically convergence and lacunary σ -statistically convergence, Math. Slovaca **43**(3) (1993) 309–315.
- [29] P. Schaefer, Infinite matrices and invariant means, Proc. Amer. Math. Soc. 36 (1972) 104–110.

References VI

- [30] I. J. Schoenberg, *The integrability of certain functions and related summability methods*, Amer. Math. Monthly **66** (1959) 361–375.
- [31] Y. Sever, U. Ulusu and E. Dndar, On Strongly I and I*-Lacunary Convergence of Sequences of Sets, AIP Conference Proceedings, 1611, 357 (2014); doi: 10.1063/1.4893860, 7 pages.
- [32] Y. Sever, . Talo, On Statistical Convergence of Double Sequences of Closed Sets, Filomat 30(3) (2016), 533–539, DOI 10.2298/FIL1603533S.
- [33] Y. Sever, Talo, B. Altay, On convergence of double sequences of closed sets, Contemp. Anal. Appl. Math. 3 (2015), 30–49.
- [34] Talo, Y. Sever, F. Başar, On statistically convergent sequences of closed set, Filomat, 30(6) (2016), (In press).

- 4 回 ト - 4 回 ト

References VII

- [35] U. Ulusu, F. Nuray, Lacunary statistical convergence of sequence of sets, Progress in Applied Mathematics, 4(2) (2012), 99–109.
- [36] U. Ulusu and E. Dndar, *I-Lacunary Statistical Convergence of Sequences of Sets*, Filomat, **28**(8) (2013), 1567–1574.
- [37] U. Ulusu, F. Nuray, On Strongly Lacunary Summability of Sequences of Sets, Journal of Applied Mathematics and Bioinformatics, 3(3) (2013), 75-88.
- [38] R. A. Wijsman, Convergence of sequences of convex sets, cones and functions, Bull. Amer. Math. Soc. 70 (1964), 186–188.
- [39] R. A. Wijsman, Convergence of Sequences of Convex sets, Cones and Functions II, Trans. Amer. Math. Soc. 123 (1) (1966), 32–45.

伺 ト く ヨ ト く ヨ ト

Thanks for your attention.

38 N.