ON \mathcal{I}-CONVERGENCE OF SEQUENCES OF FUNCTIONS IN 2-NORMED SPACES

MUKADDES ARSLAN AND ERDİNÇ DÜNDAR

Abstract

In this paper, we study concepts of convergence and ideal convergence of sequence of functions and investigate relationships between them and some properties such as linearity in 2-normed spaces. Also, we prove a decomposition theorem for ideal convergent sequences of functions in 2-normed spaces.

1. Introduction

Throughout the paper, \mathbb{N} denotes the set of all positive integers and \mathbb{R} the set of all real numbers. The concept of convergence of a sequence of real numbers has been extended to statistical convergence independently by Fast [8] and Schoenberg [26].

The idea of \mathcal{I}-convergence was introduced by Kostyrko et al. [20] as a generalization of statistical convergence which is based on the structure of the ideal \mathcal{I} of subset of $\mathbb{N}[8,9]$. Gökhan et al. [13] introduced the notion of pointwise and uniform statistical convergent of double sequences of real-valued functions. Gezer and Karakuş [12] investigated \mathcal{I}-pointwise and uniform convergence and \mathcal{I}^{*}-pointwise and uniform convergence of function sequences and they examined the relation between them. Baláz et al. [2] investigated \mathcal{I}-convergence and \mathcal{I}-continuity of real functions. Balcerzak et al. [3] studied statistical convergence and ideal convergence for sequences of functions Dündar and Altay [5, 6] studied the concepts of pointwise and uniformly \mathcal{I}_{2}-convergence and \mathcal{I}_{2}^{*}-convergence of double sequences of functions and investigated some properties about them. Furthermore, Dündar [7] investigated some results of \mathcal{I}_{2}-convergence of double sequences of functions.

The concept of 2 -normed spaces was initially introduced by Gähler $[10,11]$ in the 1960's. Since then, this concept has been studied by many authors. Gürdal and Pehlivan [17] studied statistical convergence, statistical Cauchy sequence and investigated some properties of statistical convergence in 2-normed spaces. Şahiner et al. [28] and Gürdal [19] studied \mathcal{I}-convergence in 2 -normed spaces. Gürdal and Açık [18] investigated \mathcal{I}-Cauchy and \mathcal{I}^{*}-Cauchy sequences in 2 -normed spaces. Sarabadan and Talebi [24] presented various kinds of statistical convergence and \mathcal{I}-convergence for sequences of functions with values in 2 -normed spaces and also defined the notion of \mathcal{I}-equistatistically convergence and study \mathcal{I}-equistatistically convergence of sequences of functions. Recently, Savaş and Gürdal [25] concerned with \mathcal{I}-convergence of sequences of functions in random 2-normed spaces and introduce the concepts of ideal uniform convergence and ideal pointwise convergence in the topology induced by random 2 -normed spaces, and gave some basic properties of these concepts. Arslan and Dündar [1] investigated the concepts of \mathcal{I}-convergence, \mathcal{I}^{*}-convergence, \mathcal{I}-Cauchy and \mathcal{I}^{*}-Cauchy sequences of functions in 2 -normed spaces. Also, Yegül and Dündar [30] studied statistical convergence of sequence of functions in 2-normed spaces. Futhermore, a lot of development have been made in this area (see [4, 21, 22, 23, 27, 29]).

2. Definitions and Notations

Now, we recall the concept of 2 -normed space, ideal convergence and some fundamental definitions and notations (See $[2,3,8,9,14,15,16,17,18,19,20,24,28]$).

If $K \subseteq \mathbb{N}$, then K_{n} denotes the set $\{k \in K: k \leq n\}$ and $\left|K_{n}\right|$ denotes the cardinality of K_{n}. The natural density of K is given by $\delta(K)=\lim _{n} \frac{1}{n}\left|K_{n}\right|$, if it exists.

The number sequence $x=\left(x_{k}\right)$ is statistically convergent to L provided that for every $\varepsilon>0$ the set

$$
K=K(\varepsilon):=\left\{k \in \mathbb{N}:\left|x_{k}-L\right| \geq \varepsilon\right\}
$$

has natural density zero; in this case, we write $s t-\lim x=L$.
Let $X \neq \emptyset$. A class \mathcal{I} of subsets of X is said to be an ideal in X provided:
(i) $\emptyset \in \mathcal{I}$,
(ii) $A, B \in \mathcal{I}$ implies $A \cup B \in \mathcal{I}$,
(iii) $A \in \mathcal{I}, B \subset A$ implies $B \in \mathcal{I}$.
\mathcal{I} is called a nontrivial ideal if $X \notin \mathcal{I}$.
Let $X \neq \emptyset$. A non empty class \mathcal{F} of subsets of X is said to be a filter in X provided:
(i) $\emptyset \notin \mathcal{F}$,
(ii) $A, B \in \mathcal{F}$ implies $A \cap B \in \mathcal{F}$,
(iii) $A \in \mathcal{F}, A \subset B$ implies $B \in \mathcal{F}$.

Lemma 2.1 ([20]). If \mathcal{I} is a nontrivial ideal in $X, X \neq \emptyset$, then the class

$$
\mathcal{F}(\mathcal{I})=\{M \subset X:(\exists A \in \mathcal{I})(M=X \backslash A)\}
$$

is a filter on X, called the filter associated with \mathcal{I}.
A nontrivial ideal \mathcal{I} in X is called admissible if $\{x\} \in \mathcal{I}$, for each $x \in X$.
Example 2.1. Let \mathcal{I}_{f} be the family of all finite subsets of \mathbb{N}. Then, \mathcal{I}_{f} is an admissible ideal in \mathbb{N} and \mathcal{I}_{f} convergence is the usual convergence.

Throughout the paper, we let $\mathcal{I} \subset 2^{\mathbb{N}}$ be an admissible ideal.
A sequence $\left(f_{n}\right)$ of functions is said to be \mathcal{I}-convergent (pointwise) to f on $D \subseteq \mathbb{R}$ if and only if for every $\varepsilon>0$ and each $x \in D$,

$$
\left\{n:\left|f_{n}(x)-f(x) \geq \varepsilon\right|\right\} \in \mathcal{I}
$$

In this case, we will write $f_{n} \xrightarrow{\mathcal{I}} f$ on D.
A sequence $\left(f_{n}\right)$ of functions is said to be \mathcal{I}^{*}-convergent (pointwise) to f on $D \subseteq \mathbb{R}$ if and only if $\forall \varepsilon>0$ and $\forall x \in D, \exists K_{x} \notin \mathcal{I}$ and $\exists n_{0}=n_{0}(\varepsilon, x) \in K_{x}: \forall n \geq n_{0}$ and $n \in K_{x}$, $\left|f_{n}(x)-f(x)\right|<\varepsilon$.

Let X be a real vector space of dimension d, where $2 \leq d<\infty$. A 2-norm on X is a function $\|\cdot, \cdot\|: X \times X \rightarrow \mathbb{R}$ which satisfies the following statements:
(i) $\|x, y\|=0$ if and only if x and y are linearly dependent.
(ii) $\|x, y\|=\|y, x\|$.
(iii) $\|\alpha x, y\|=|\alpha|\|x, y\|, \alpha \in \mathbb{R}$.
(iv) $\|x, y+z\| \leq\|x, y\|+\|x, z\|$.

The pair $(X,\|\cdot, \cdot\|)$ is then called a 2-normed space. As an example of a 2-normed space we may take $X=\mathbb{R}^{2}$ being equipped with the 2-norm $\|x, y\|:=$ the area of the parallelogram based on the vectors x and y which may be given explicitly by the formula

$$
\|x, y\|=\left|x_{1} y_{2}-x_{2} y_{1}\right| ; \quad x=\left(x_{1}, x_{2}\right), y=\left(y_{1}, y_{2}\right) \in \mathbb{R}^{2}
$$

In this study, we suppose X to be a 2-normed space having dimension d; where $2 \leq d<\infty$.

A sequence $\left(x_{n}\right)$ in 2-normed space $(X,\|\cdot, \cdot\|)$ is said to be convergent to L in X if

$$
\lim _{n \rightarrow \infty}\left\|x_{n}-L, y\right\|=0
$$

for every $y \in X$. In such a case, we write $\lim _{n \rightarrow \infty} x_{n}=L$ and call L the limit of $\left(x_{n}\right)$.
A sequence $\left(x_{n}\right)$ in 2-normed space $(X,\|\cdot, \cdot\|)$ is said to be \mathcal{I}-convergent to $L \in X$, if for each $\varepsilon>0$ and each nonzero $z \in X$,

$$
A(\varepsilon, z)=\left\{n \in \mathbb{N}:\left\|x_{n}-L, z\right\| \geq \varepsilon\right\} \in \mathcal{I}
$$

In this case, we write $\mathcal{I}-\lim _{n \rightarrow \infty}\left\|x_{n}-L, z\right\|=0$ or $\mathcal{I}-\lim _{n \rightarrow \infty}\left\|x_{n}, z\right\|=\|L, z\|$.
A sequence $\left(x_{n}\right)$ in 2-normed space $(X,\|\cdot, \cdot\|)$ is said to be \mathcal{I}^{*}-convergent to $L \in X$ if and only if there exists a set $M \in \mathcal{F}, M=\left\{m_{1}<m_{2}<\cdots<m_{k}<\cdots\right\}$ such that $\lim _{n \rightarrow \infty}\left\|x_{m_{k}}-L, z\right\|=0$, for each nonzero $z \in X$.

Let X and Y be two 2-normed spaces, $\left\{f_{n}\right\}$ be a sequence of functions and f be a function from X to $Y .\left\{f_{n}\right\}$ is said to be convergent to f if $f_{n}(x) \xrightarrow{\|.,\|_{Y}} f(x)$ for each $x \in X$. We write $f_{n} \xrightarrow{\|.,\|_{Y}} f$. This can be expressed by the formula

$$
(\forall z \in Y)(\forall x \in X)(\forall \varepsilon>0)\left(\exists n_{0} \in \mathbb{N}\right)\left(\forall n \geq n_{0}\right)\left\|f_{n}(x)-f(x), z\right\|<\varepsilon
$$

Let X and Y be two 2-normed spaces, $\left\{f_{n}\right\}$ be a sequence of functions and f be a function from X to Y. $\left\{f_{n}\right\}$ is said to be \mathcal{I}-pointwise convergent to f, if for every $\varepsilon>0$ and each nonzero $z \in Y, A(\varepsilon, z)=\left\{n \in \mathbb{N}:\left\|f_{n}(x)-f(x), z\right\| \geq \varepsilon\right\} \in \mathcal{I}$ or $\mathcal{I}-\lim _{n \rightarrow \infty}\left\|f_{n}(x)-f(x), z\right\|_{Y}=0\left(\right.$ in $\left(Y,\|., .\|_{Y}\right)$), for each $x \in X$. In this case, we write $f_{n} \xrightarrow{\|\cdot,,\|_{Y}} \mathcal{I} f$. This can be expressed by the formula
$(\forall z \in Y)(\forall \varepsilon>0)(\exists M \in \mathcal{I})\left(\forall n_{0} \in \mathbb{N} \backslash M\right)(\forall x \in X)\left(\forall n \geq n_{0}\right)\left\|f_{n}(x)-f(x), z\right\| \leq \varepsilon$.
Let X and Y be two 2 -normed spaces, $\left\{f_{n}\right\}$ be a sequence of functions and f be a function from X to $Y .\left\{f_{n}\right\}$ is said to be pointwise \mathcal{I}^{*}-convergent to f, if there exists a set $M \in \mathcal{F}(\mathcal{I})$, (i.e., $\mathbb{N} \backslash M \in \mathcal{I}), M=\left\{m_{1}<m_{2}<\cdots<m_{k}<\cdots\right\}$, such that for each $x \in X$ and each nonzero $z \in Y \lim _{k \rightarrow \infty}\left\|f_{n_{k}}(x), z\right\|=\|f(x), z\|$ and we write

$$
\mathcal{I}^{*}-\lim _{n \rightarrow \infty}\left\|f_{n}(x), z\right\|=\|f(x), z\| \text { or } f_{n} \xrightarrow{\mathcal{I}^{*}} f
$$

An admissible ideal $\mathcal{I} \subset 2^{\mathbb{N}}$ is said to satisfy the condition $(A P)$ if for every countable family of mutually disjoint sets $\left\{A_{1}, A_{2}, \ldots\right\}$ belonging to \mathcal{I} there exists a countable family of sets $\left\{B_{1}, B_{2}, \ldots\right\}$ such that $A_{i} \Delta B_{i}$ is a finite set for $j \in \mathbb{N}$ and $B=\bigcup_{i=1}^{\infty} B_{i} \in \mathcal{I}$.

Now we begin with quoting the lemmas due to Arslan and Dündar [1] which are needed throughout the paper.

Lemma 2.2 ([1]). Let X and Y be two 2-normed spaces, $\left\{f_{n}\right\}$ be a sequence of functions and f be a function from X to Y. For each $x \in X$ and each nonzero $z \in Y$,

$$
\mathcal{I}^{*}-\lim _{n \rightarrow \infty}\left\|f_{n}(x), z\right\|=\|f(x), z\| \text { implies } \mathcal{I}-\lim _{n \rightarrow \infty}\left\|f_{n}(x), z\right\|=\|f(x), z\|
$$

Lemma 2.3 ([1]). Let $\mathcal{I} \subset 2^{\mathbb{N}}$ be an admissible ideal having the property $(A P)$, X and Y be two 2-normed spaces, $\left\{f_{n}\right\}$ be a sequence of functions and f be a function from X to Y. If the sequence of functions $\left\{f_{n}\right\}$ is \mathcal{I}-convergent, then it is \mathcal{I}^{*}-convergent.

3. Main Results

In this paper, we study concepts of convergence, \mathcal{I}-convergence, \mathcal{I}^{*}-convergence of functions and investigate relationships between them and some properties such as linearity in 2-normed spaces.

Throughout the paper, we let $\mathcal{I} \subset 2^{\mathbb{N}}$ be an admissible ideal, X and Y be two 2-normed spaces, $\left\{f_{n}\right\}_{n \in \mathbb{N}}$ and $\left\{g_{n}\right\}_{n \in \mathbb{N}}$ be two sequences of functions and f, g be two functions from X to Y.

Theorem 3.1. For each $x \in X$ and each nonzero $z \in Y$ we have

$$
\lim _{n \rightarrow \infty}\left\|f_{n}(x), z\right\|=\|f(x), z\| \quad \text { implies } \mathcal{I}-\lim _{n \rightarrow \infty}\left\|f_{n}(x), z\right\|=\|f(x), z\|
$$

Proof. Let $\varepsilon>0$ be given. Since

$$
\lim _{n \rightarrow \infty}\left\|f_{n}(x), z\right\|=\|f(x), z\|
$$

for each $x \in X$ and each nonzero $z \in Y$, therefore, there exists a positive integer $k_{0}=$ $k_{o}(\varepsilon, x)$ such that $\left\|f_{n}(x)-f(x), z\right\|<\varepsilon$, whenever $n \geq k_{0}$. This implies that the set

$$
A(\varepsilon, z)=\left\{n \in \mathbb{N}:\left\|f_{n}(x)-f(x), z \geq \varepsilon\right\|\right\} \subset\left\{1,2, \ldots,\left(k_{0}-1\right)\right\}
$$

Since \mathcal{I} be an admissible ideal and $\mathcal{I}_{f} \subset \mathcal{I}$, then $\left\{1,2, \ldots,\left(k_{0}-1\right)\right\} \in \mathcal{I}$. Hence, it is clear that $A(\varepsilon, z) \in \mathcal{I}$ and consequently we have

$$
\mathcal{I}-\lim _{n \rightarrow \infty}\left\|f_{n}(x), z\right\|=\|f(x), z\|
$$

for each $x \in X$ and each nonzero $z \in Y$.
Theorem 3.2. If \mathcal{I}-limit of any sequence of functions $\left\{f_{n}\right\}$ exists, then it is unique.
Proof. Let a sequence $\left\{f_{n}\right\}$ of functions and f, g be two functions from X to Y. Assume that

$$
\mathcal{I}-\lim _{n \rightarrow \infty}\left\|f_{n}\left(x_{0}\right), z\right\|=\left\|f\left(x_{0}\right), z\right\| \text { and } \mathcal{I}-\lim _{n \rightarrow \infty}\left\|f_{n}\left(x_{0}\right), z\right\|=\left\|g\left(x_{0}\right), z\right\|
$$

where $f\left(x_{0}\right) \neq g\left(x_{0}\right)$ for a $x_{0} \in X$ and each nonzero $z \in Y$. Since $f\left(x_{0}\right) \neq g\left(x_{0}\right)$, so we may suppose that $f\left(x_{0}\right) \geq g\left(x_{0}\right)$. Select $\varepsilon=\frac{f\left(x_{0}\right)-g\left(x_{0}\right)}{3}$, so that the neighborhoods $\left(f\left(x_{0}\right)-\varepsilon, f\left(x_{0}\right)+\varepsilon\right)$ and $\left(g\left(x_{0}\right)-\varepsilon, g\left(x_{0}\right)+\varepsilon\right)$ of points $f\left(x_{0}\right)$ and $g\left(x_{0}\right)$, respectively are disjoints. Since for $x_{0} \in X$ and each nonzero $z \in Y$,

$$
\mathcal{I}-\lim _{n \rightarrow \infty}\left\|f_{n}\left(x_{0}\right), z\right\|=\left\|f\left(x_{0}\right), z\right\| \text { and } \mathcal{I}-\lim _{n \rightarrow \infty}\left\|g_{n}\left(x_{0}\right), z\right\|=\left\|g\left(x_{0}\right), z\right\|
$$

then, we have

$$
A(\varepsilon, z)=\left\{n \in \mathbb{N}:\left\|f_{n}\left(x_{0}\right)-f\left(x_{0}\right), z\right\| \geq \varepsilon\right\} \in \mathcal{I}
$$

and

$$
B(\varepsilon, z)=\left\{n \in \mathbb{N}:\left\|f_{n}\left(x_{0}\right)-g\left(x_{0}\right), z\right\| \geq \varepsilon\right\} \in \mathcal{I}
$$

This implies that the sets

$$
A^{c}(\varepsilon, z)=\left\{n \in \mathbb{N}:\left\|f_{n}\left(x_{0}\right)-f\left(x_{0}\right), z\right\|<\varepsilon\right\}
$$

and

$$
B^{c}(\varepsilon, z)=\left\{n \in \mathbb{N}:\left\|f_{n}\left(x_{0}\right)-g\left(x_{0}\right), z\right\|<\varepsilon\right\}
$$

belong to $\mathcal{F}(\mathcal{I})$ and $A^{c}(\varepsilon, z) \cap B^{c}(\varepsilon, z)$ is a nonempty set in $\mathcal{F}(\mathcal{I})$ for $x_{0} \in X$ and each nonzero $z \in Y$. Since $A^{c}(\varepsilon, z) \cap B^{c}(\varepsilon, z) \neq \emptyset$, we obtain a contradiction on the fact that the neighborhoods $\left(f\left(x_{0}\right)-\varepsilon, f\left(x_{0}\right)+\varepsilon\right)$ and $\left(g\left(x_{0}\right)-\varepsilon, g\left(x_{0}\right)+\varepsilon\right)$ of points $f\left(x_{0}\right)$ and $g\left(x_{0}\right)$, respectively are disjoints. Hence, it is clear that for $x_{0} \in X$ and each nonzero $z \in Y$,

$$
\left\|f_{n}\left(x_{0}\right), z\right\|=\left\|g_{n}\left(x_{0}\right), z\right\|
$$

and consequently we have $\left\|f_{n}(x), z\right\|=\| g_{n}(x)$, $z \|$, (i.e., $f=g$), for each $x \in X$ and each nonzero $z \in Y$.

Theorem 3.3. For each $x \in X$ and each nonzero $z \in Y$,
(i) If $\mathcal{I}-\lim _{n \rightarrow \infty}\left\|f_{n}(x), z\right\|=\|f(x), z\|$ and $\mathcal{I}-\lim _{n \rightarrow \infty}\left\|g_{n}(x), z\right\|=\|g(x), z\|$, then

$$
\mathcal{I}-\lim _{n \rightarrow \infty}\left\|f_{n}(x)+g_{n}(x), z\right\|=\|f(x)+g(x), z\| .
$$

(ii) $\mathcal{I}-\lim _{n \rightarrow \infty}\left\|c . f_{n}(x), z\right\|=\|c . f(x), z\|, c \in \mathbb{R}$.
(iii) $\mathcal{I}-\lim _{n \rightarrow \infty}\left\|f_{n}(x) \cdot g_{n}(x), z\right\|=\|f(x) \cdot g(x), z\|$.

Proof. (i) Let $\varepsilon>0$ be given. Since

$$
\mathcal{I}-\lim _{n \rightarrow \infty}\left\|f_{n}(x), z\right\|=\|f(x), z\| \text { and } \mathcal{I}-\lim _{n \rightarrow \infty}\left\|g_{n}(x), z\right\|=\|g(x), z\|,
$$

for each $x \in X$ and each nonzero $z \in Y$. Therefore,

$$
A\left(\frac{\varepsilon}{2}, z\right)=\left\{n \in \mathbb{N}:\left\|f_{n}(x)-f(x), z\right\| \geq \frac{\varepsilon}{2}\right\} \in \mathcal{I}
$$

and

$$
B\left(\frac{\varepsilon}{2}, z\right)=\left\{n \in \mathbb{N}:\left\|g_{n}(x)-g(x), z\right\| \geq \frac{\varepsilon}{2}\right\} \in \mathcal{I}
$$

and by the definition of ideal we have

$$
A\left(\frac{\varepsilon}{2}, z\right) \cup B\left(\frac{\varepsilon}{2}, z\right) \in \mathcal{I} .
$$

Now, for each $x \in X$ and each nonzero $z \in Y$ we define the set

$$
C(\varepsilon, z)=\left\{n \in \mathbb{N}:\left\|\left(f_{n}(x)+g_{n}(x)\right)-(f(x)+g(x)), z\right\| \geq \varepsilon\right\}
$$

and it is sufficient to prove that $C(\varepsilon, z) \subset A\left(\frac{\varepsilon}{2}, z\right) \cup B\left(\frac{\varepsilon}{2}, z\right)$. Let $n \in C(\varepsilon, z)$, then for each $x \in X$ and each nonzero $z \in Y$, we have

$$
\varepsilon \leq\left\|\left(f_{n}(x)+g_{n}(x)\right)-(f(x)+g(x)), z\right\| \leq\left\|f_{n}(x)-f(x), z\right\|+\left\|g_{n}(x)-g(x), z\right\| .
$$

As both of $\left\{\left\|f_{n}(x)-f(x), z\right\|,\left\|g_{n}(x)-g(x), z\right\|\right\}$ can not be (together) strictly less than $\frac{\varepsilon}{2}$ and therefore either

$$
\left\|f_{n}(x)-f(x), z\right\| \geq \frac{\varepsilon}{2} \text { or }\left\|g_{n}(x)-g(x), z\right\| \geq \frac{\varepsilon}{2}
$$

for each $x \in X$ and each nonzero $z \in Y$. This shows that $n \in A\left(\frac{\varepsilon}{2}, z\right)$ or $n \in B\left(\frac{\varepsilon}{2}, z\right)$ and so we have

$$
n \in A\left(\frac{\varepsilon}{2}, z\right) \cup B\left(\frac{\varepsilon}{2}, z\right) \text {. }
$$

Hence, $C(\varepsilon, z) \subset A\left(\frac{\varepsilon}{2}, z\right) \cup B\left(\frac{\varepsilon}{2}, z\right)$.
(ii) Let $c \in \mathbb{R}$ and $\mathcal{I}-\lim _{n \rightarrow \infty}\left\|f_{n}(x), z\right\|=\|f(x), z\|$, for each $x \in X$ and each nonzero $z \in Y$. If $c=0$, there is nothing to prove, so we assume $c \neq 0$. Then,

$$
\left\{n \in \mathbb{N}:\left\|f_{n}(x)-f(x), z\right\| \geq \frac{\varepsilon}{|c|}\right\} \in \mathcal{I},
$$

for each $x \in X$ and each nonzero $z \in Y$ and by the definition we have

$$
\left\{n \in \mathbb{N}:\left\|c . f_{n}(x)-c . f(x), z\right\| \geq \varepsilon\right\}=\left\{n \in \mathbb{N}:\left\|f_{n}(x)-f(x), z\right\| \geq \frac{\varepsilon}{|c|}\right\} .
$$

Hence, the right side of above equality belongs to \mathcal{I} and so

$$
\mathcal{I}-\lim _{n \rightarrow \infty}\left\|c . f_{n}(x), z\right\|=\|c . f(x), z\|,
$$

for each $x \in X$ and each nonzero $z \in Y$.
(iii) Since

$$
\mathcal{I}-\lim _{n \rightarrow \infty}\left\|f_{n}(x), z\right\|=\|f(x), z\|
$$

for each $x \in X$ and each nonzero $z \in Y$, then for $\varepsilon=1>0$

$$
\left\{n \in \mathbb{N}:\left\|f_{n}(x)-f(x), z\right\| \geq 1\right\} \in \mathcal{I}
$$

and so

$$
A=\left\{n \in \mathbb{N}:\left\|f_{n}(x)-f(x), z\right\|<1\right\} \in \mathcal{F}(\mathcal{I})
$$

Also, for any $n \in A,\left\|f_{n}(x), z\right\|<1+\|f(x), z\|$ for each $x \in X$ and each nonzero $z \in Y$. Let $\varepsilon>0$ be given. Chose $\delta>0$ such that

$$
0<2 \delta<\frac{\varepsilon}{\|f(x), z\|+\|g(x), z\|+1}
$$

for each $x \in X$ and each nonzero $z \in Y$. It follows from the assumption that,

$$
B=\left\{n \in \mathbb{N}:\left\|f_{n}(x)-f(x), z\right\|<\delta\right\} \in \mathcal{F}(\mathcal{I})
$$

and

$$
C=\left\{n \in \mathbb{N}:\left\|g_{n}(x)-g(x), z\right\|<\delta\right\} \in \mathcal{F}(\mathcal{I})
$$

for each $x \in X$ and each nonzero $z \in Y$. Since $\mathcal{F}(\mathcal{I})$ is a filter, therefore $A \cap B \cap C \in \mathcal{F}(\mathcal{I})$. Then, for each $n \in A \cap B \cap C$ we have

$$
\begin{aligned}
\left\|f_{n}(x) \cdot g_{n}(x)-f(x) \cdot g(x), z\right\| & =\left\|f_{n}(x) \cdot g_{n}(x)-f_{n}(x) \cdot g(x)+f_{n}(x) \cdot g(x)-f(x) \cdot g(x), z\right\| \\
& \leq\left\|f_{n}(x), z\right\| \cdot\left\|g_{n}(x)-g(x), z\right\| \\
& +\|g(x), z\| \cdot\left\|f_{n}(x)-f(x), z\right\| \\
& <(\|f(x), z\|+1) \cdot \delta+(\|g(x), z\|) \cdot \delta \\
& =(\|f(x), z\|+\|g(x), z\|+1) \cdot \delta \\
& <\varepsilon
\end{aligned}
$$

and so, we have

$$
\left\{n \in \mathbb{N}:\left\|f_{n}(x) \cdot g_{n}(x)-f(x) \cdot g(x), z\right\| \geq \varepsilon\right\} \in \mathcal{I}
$$

for each $x \in X$ and each nonzero $z \in Y$. This completes the proof of theorem.
Theorem 3.4. Let X, Y be two 2 -normed spaces, $\left\{f_{n}\right\},\left\{g_{n}\right\}$ and $\left\{h_{n}\right\}$ be sequences of functions and k be a function from X to Y. For each $x \in X$ and each nonzero $z \in Y$, if
(i) $\left\{f_{n}\right\} \leq\left\{g_{n}\right\} \leq\left\{h_{n}\right\}$, for every $n \in K$, where $\mathbb{N} \supseteq K \in \mathcal{F}(\mathcal{I})$ and
(ii) $\mathcal{I}-\lim _{n \rightarrow \infty}\left\|f_{n}(x), z\right\|=\|k(x), z\|$ and $\mathcal{I}-\lim _{n \rightarrow \infty}\left\|h_{n}(x), z\right\|=\|k(x), z\|$,
then $\mathcal{I}-\lim _{n \rightarrow \infty}\left\|g_{n}(x), z\right\|=\|k(x), z\|$.
Proof. Let $\varepsilon>0$ be given. By condition (ii) we have

$$
\left\{n \in \mathbb{N}:\left\|f_{n}(x)-k(x), z\right\| \geq \varepsilon\right\} \in \mathcal{I} \text { and }\left\{n \in \mathbb{N}:\left\|h_{n}(x)-k(x), z\right\| \geq \varepsilon\right\} \in \mathcal{I}
$$

for each $x \in X$ and each nonzero $z \in Y$. This implies that the sets

$$
P=\left\{n \in \mathbb{N}:\left\|f_{n}(x)-k(x), z\right\|<\varepsilon\right\} \text { and } R=\left\{n \in \mathbb{N}:\left\|h_{n}(x)-k(x), z\right\|<\varepsilon\right\}
$$

belong to $\mathcal{F}(\mathcal{I})$, for each $x \in X$ each nonzero $z \in Y$. Let

$$
Q=\left\{n \in \mathbb{N}:\left\|g_{n}(x)-k(x), z\right\|<\varepsilon\right\}
$$

for each $x \in X$ and each nonzero $z \in Y$. It is clear that the set $P \cap R \cap K \subset Q$. Since $P \cap R \cap K \in \mathcal{F}(\mathcal{I})$ and $P \cap R \cap K \subset Q$, then from the property of filter, we have $Q \in \mathcal{F}(\mathcal{I})$ and so

$$
\left\{n \in \mathbb{N}:\left\|g_{n}(x)-k(x), z\right\| \geq \varepsilon\right\} \in \mathcal{I}
$$

for each $x \in X$ and each nonzero $z \in Y$.
Theorem 3.5. For each $x \in X$ and each nonzero $z \in Y$, we let

$$
\mathcal{I}-\lim _{n \rightarrow \infty}\left\|f_{n}(x), z\right\|=\|f(x), z\| \text { and } \mathcal{I}-\lim _{n \rightarrow \infty}\left\|g_{n}(x), z\right\|=\|g(x), z\|
$$

Then, for every $n \in K$ we have
(i) If $f_{n}(x) \geq 0$ then, $f(x) \geq 0$ and
(ii) If $f_{n}(x) \leq g_{n}(x)$ then $f(x) \leq g(x)$, where $K \subseteq \mathbb{N}$ and $K \in \mathcal{F}(\mathcal{I})$.

Proof. (i) Suppose that $f(x)<0$. Select $\varepsilon=-\frac{f(x)}{2}$, for each $x \in X$. Since $\mathcal{I}-$ $\lim _{n \rightarrow \infty}\left\|f_{n}(x), z\right\|=\|f(x), z\|$, so there exists the set M such that

$$
M=\left\{n \in \mathbb{N}:\left\|f_{n}(x)-f(x), z\right\|<\varepsilon\right\} \in \mathcal{F}(\mathcal{I})
$$

for each $x \in X$ and each nonzero $z \in Y$. Since $M, K \in \mathcal{F}(\mathcal{I})$, then $M \cap K$ is a nonempty set in $\mathcal{F}(\mathcal{I})$. So we can find out a point n_{0} in K such that

$$
\left\|f_{n_{0}}(x)-f(x), z\right\|<\varepsilon
$$

Since $f(x)<0$ and $\varepsilon=\frac{-f(x)}{2}$ for each $x \in X$, then we have $f_{n_{0}}(x) \leq 0$. This is a conradiction to the fact that $f_{n}(x)>0$ for every $n \in K$. Hence, we have $f(x)>0$, for each $x \in X$.
(ii) Suppose that $f(x)>g(x)$. Select $\varepsilon=\frac{f(x)-g(x)}{3}$ for each $x \in X$. So that the neighborhoods $\left(f\left(x_{0}\right)-\varepsilon, f\left(x_{0}\right)+\varepsilon\right)$ and $\left(g\left(x_{0}\right)-\varepsilon, g\left(x_{0}\right)+\varepsilon\right)$ of $f(x)$ and $g(x)$, respectively, are disjoints. Since for each $x \in X$ and each nonzero $z \in Y$,

$$
\mathcal{I}-\lim _{n \rightarrow \infty}\left\|f_{n}(x), z\right\|=\|f(x), z\| \text { and } \mathcal{I}-\lim _{n \rightarrow \infty}\left\|g_{n}(x), z\right\|=\|g(x), z\|
$$

and $\mathcal{F}(\mathcal{I})$ is a filter on \mathbb{N}, therefore we have

$$
A=\left\{n \in \mathbb{N}:\left\|f_{n}(x)-f(x), z\right\|<\varepsilon\right\} \in \mathcal{F}(\mathcal{I})
$$

and

$$
B=\left\{n \in \mathbb{N}:\left\|g_{n}(x)-g(x), z\right\|<\varepsilon\right\} \in \mathcal{F}(\mathcal{I})
$$

This implies that $\emptyset \neq A \cap B \cap K \in \mathcal{F}(\mathcal{I})$. There exists a point n_{0} in K such that

$$
\left\|f_{n}(x)-f(x), z\right\|<\varepsilon \text { and }\left\|g_{n}(x)-g(x), z\right\|<\varepsilon
$$

Since $f(x)>g(x)$ and $\varepsilon=\frac{f(x)-g(x)}{3}$ for each $x \in X$, then we have $f_{n_{0}}(x)>g_{n_{0}}(x)$. This is a contradiction to the fact $f_{n}(x) \leq g_{n}(x)$ for every $n \in K$. Thus, we have $f(x) \leq g(x)$, for each $x \in X$.

Theorem 3.6. Let $\mathcal{I} \subset 2^{\mathbb{N}}$ be an admissible ideal having the property $(A P)$. Then, for each $x \in X$ and each nonzero $z \in Y$, following conditions are equivalent:
(i) $\mathcal{I}-\lim _{n \rightarrow \infty}\left\|f_{n}(x), z\right\|=\|f(x), z\|$
(ii) There exists $\left\{g_{n}\right\}$ and $\left\{h_{n}\right\}$ be two sequences of functions from X to Y such that

$$
f_{n}(x)=g_{n}(x)+h_{n}(x), \quad \lim _{n \rightarrow \infty}\left\|g_{n}(x), z\right\|=\|f(x), z\| \text { and } \operatorname{supp} h_{n}(x) \in \mathcal{I}
$$

where $\operatorname{supp} h_{n}(x)=\left\{n \in \mathbb{N}: h_{n}(x) \neq 0\right\}$.
Proof. (i) \Rightarrow (ii) : $\mathcal{I}-\lim _{n \rightarrow \infty}\left\|f_{n}(x), z\right\|=\|f(x), z\|$, for each $x \in X$ and each nonzero $z \in Y$. Then, by Lemma 2.3 there exists a set $M \in \mathcal{F}(\mathcal{I})$, (i.e., $\mathrm{H}=\mathbb{N} \backslash M \in \mathcal{I}), M=\left\{m_{1}<\right.$ $\left.m_{2}<\cdots<m_{k}<\cdots\right\}$, such that for each $x \in X$ and each nonzero $z \in Y$,

$$
\lim _{k \rightarrow \infty}\left\|f_{n_{k}}(x), z\right\|=\|f(x), z\|
$$

Let us define the sequence $\left\{g_{n}\right\}$ by

$$
g_{n}(x)=\left\{\begin{array}{cl}
f_{n}(x) & , \quad n \in M \tag{3.1}\\
f(x) & , \quad n \in \mathbb{N} \backslash M
\end{array}\right.
$$

It is clear that $\left\{g_{n}\right\}$ is a sequence of functions and $\lim _{n \rightarrow \infty}\left\|g_{n}(x), z\right\|=\|f(x), z\|$ for each $x \in X$ and each nonzero $z \in Y$. Also let

$$
\begin{equation*}
h_{n}(x)=f_{n}(x)-g_{n}(x), \quad n \in \mathbb{N} \tag{3.2}
\end{equation*}
$$

for each $x \in X$. Since

$$
\left\{n \in \mathbb{N}: f_{n}(x) \neq g_{n}(x)\right\} \subset \mathbb{N} \backslash M \in \mathcal{I}
$$

for each $x \in X$, so we have

$$
\left\{n \in \mathbb{N}: h_{n}(x) \neq 0\right\} \in \mathcal{I} .
$$

It follows that $\operatorname{supp} h_{n}(x) \in \mathcal{I}$ and by (3.1) and (3.2) we get $f_{n}(x)=g_{n}(x)+h_{n}(x)$, for each $x \in X$.
(ii) \Rightarrow (i) : Suppose that there exist two sequences $\left\{g_{n}\right\}$ and $\left\{h_{n}\right\}$ such that

$$
\begin{equation*}
f_{n}(x)=g_{n}(x)+h_{n}(x), \lim _{n \rightarrow \infty}\left\|g_{n}(x), z\right\|=\|f(x), z\| \text { and } \operatorname{supp} h_{n}(x) \in \mathcal{I} \tag{3.3}
\end{equation*}
$$

for each $x \in X$ and each nonzero $z \in Y$, where $\operatorname{supp} h_{n}(x)=\left\{n \in \mathbb{N}: h_{n}(x) \neq 0\right\}$. We will show that $\mathcal{I}-\lim _{n \rightarrow \infty}\left\|f_{n}(x), z\right\|=\|f(x), z\|$ for each $x \in X$ and each nonzero $z \in Y$. Define $M=\left\{n_{k}\right\}$ to be a subset of \mathbb{N} such that

$$
\begin{equation*}
M=\left\{n \in \mathbb{N}: h_{n}(x)=0\right\}=\mathbb{N} \backslash \operatorname{supp} h_{n}(x) \tag{3.4}
\end{equation*}
$$

Since

$$
\operatorname{supp} h_{n}(x)=\left\{n \in \mathbb{N}: h_{n}(x) \neq 0\right\} \in \mathcal{I}
$$

then from (3.3) and (3.4) we have $M \in \mathcal{F}(\mathcal{I}), f_{n}(x)=g_{n}(x)$ if $n \in M$. Hence, we conclude that there exists a set $M=\left\{m_{1}<m_{2}<\cdots<m_{k}<\cdots\right\}, M \in \mathcal{F}(\mathcal{I})$ such that

$$
\lim _{k \rightarrow \infty}\left\|f_{n_{k}}(x), z\right\|=\|f(x), z\|
$$

and so $\mathcal{I}^{*}-\lim _{n \rightarrow \infty}\left\|f_{n}(x), z\right\|=\|f(x), z\|$, for each $x \in X$ and each nonzero $z \in Y$. By Lemma 2.2 it follows that $\mathcal{I}-\lim _{n \rightarrow \infty}\left\|f_{n}(x), z\right\|=\|f(x), z\|$, for each $x \in X$ and each nonzero $z \in Y$. This completes the proof.

Corollary 3.1. Let $\mathcal{I} \subset 2^{\mathbb{N}}$ be an admissible ideal having the property $(A P)$. Then, $\mathcal{I}-\lim _{n \rightarrow \infty}\left\|f_{n}(x), z\right\|=\|f(x), z\|$ if and only if there exist $\left\{g_{n}\right\}$ and $\left\{h_{n}\right\}$ be two sequences of functions from X to Y such that

$$
f_{n}(x)=g_{n}(x)+h_{n}(x), \quad \lim _{n \rightarrow \infty}\left\|g_{n}(x), z\right\|=\|f(x), z\| \quad \text { and } \mathcal{I}-\lim _{n \rightarrow \infty}\left\|h_{n}(x), z\right\|=0
$$

for each $x \in X$ and each nonzero $z \in Y$.
Proof. Let $\mathcal{I}-\lim _{n \rightarrow \infty}\left\|f_{n}(x), z\right\|=\|f(x), z\|$ and $\left\{g_{n}\right\}$ is a sequence defined by (3.1). Consider the sequence

$$
\begin{equation*}
h_{n}(x)=f_{n}(x)-g_{n}(x), \quad n \in \mathbb{N} \tag{3.5}
\end{equation*}
$$

for each $x \in X$. Then, we have

$$
\lim _{n \rightarrow \infty}\left\|g_{n}(x), z\right\|=\|f(x), z\|
$$

and since \mathcal{I} is an admissible ideal so

$$
\mathcal{I}-\lim _{n \rightarrow \infty}\left\|g_{n}(x), z\right\|=\|f(x), z\|
$$

for each $x \in X$ and each nonzero $z \in Y$. By Theorem 3.3 and by (3.5) we have

$$
\mathcal{I}-\lim _{n \rightarrow \infty}\left\|h_{n}(x), z\right\|=0,
$$

for each $x \in X$ and each nonzero $z \in Y$.
Now let $f_{n}(x)=g_{n}(x)+h_{n}(x)$, where

$$
\lim _{n \rightarrow \infty}\left\|g_{n}(x), z\right\|=\|f(x), z\| \text { and } \mathcal{I}-\lim _{n \rightarrow \infty}\left\|h_{n}(x), z\right\|=0
$$

for each $x \in X$ and each nonzero $z \in Y$. Since \mathcal{I} is an admissible ideal so

$$
\mathcal{I}-\lim _{n \rightarrow \infty}\left\|g_{n}(x), z\right\|=\|f(x), z\|
$$

and by Theorem 3.3 we get

$$
\mathcal{I}-\lim _{n \rightarrow \infty}\left\|f_{n}(x), z\right\|=\|f(x), z\|,
$$

for each $x \in X$ and each nonzero $z \in Y$.
Remark 3.1. In Theorem 3.6, if (ii) is satisfied then the admissible ideal \mathcal{I} need not have the property $(A P)$. Since for each $x \in X$ and each nonzero $z \in Y$,

$$
\left\{n \in \mathbb{N}:\left\|h_{n}(x), z\right\| \geq \varepsilon\right\} \subset\left\{n \in \mathbb{N}: h_{n}(x) \neq 0\right\} \in \mathcal{I}
$$

for each $\varepsilon>0$, then

$$
\mathcal{I}-\lim _{n \rightarrow \infty}\left\|h_{n}(x), z\right\|=0 .
$$

Hence, we have

$$
\mathcal{I}-\lim _{n \rightarrow \infty}\left\|f_{n}(x), z\right\|=\|f(x), z\|,
$$

for each $x \in X$ and each nonzero $z \in Y$.

References

[1] M. Arslan, E. Dündar, I-Convergence and I-Cauchy Sequence of Functions In 2-Normed Spaces, (Under Communication).
[2] V. Baláz, J. C̆erven̆anský, P. Kostyrko, T. S̆alát, I-convergence and I-continuity of real functions, Acta Mathematica, Faculty of Natural Sciences, Constantine the Philosopher University, Nitra, 5 (2004), 43-50.
[3] M. Balcerzak, K. Dems, A. Komisarski, Statistical convergence and ideal convergence for sequences of functions, J. Math. Anal. Appl. 328 (2007), 715-729.
[4] H. Çakalli and S. Ersan, New types of continuity in 2-normed spaces, Filomat, 30(3) (2016), 525-532.
[5] E. Dündar, B. Altay, \mathcal{I}_{2}-convergence of double sequences of functions, Electronic Journal of Mathematical Analysis and Applications, 3(1) (2015), 111-121.
[6] E. Dündar, B. Altay, \mathcal{I}_{2}-uniform convergence of double sequences of functions, Filomat, 30(5) (2016), 1273-1281.
[7] E. Dündar, On some results of \mathcal{I}_{2}-convergence of double sequences of functions, Mathematical Analysis Sciences and Applications E-notes, 3(1) (2015), 44-52.
[8] H. Fast, Sur la convergence statistique, Colloq. Math. 2 (1951), 241-244.
[9] J.A. Fridy, On statistical convergence, Analysis 5 (1985), 301-313.
[10] S. Gähler, 2-metrische Räume und ihre topologische struktur, Math. Nachr. 26 (1963), 115-148.
[11] S. Gähler, 2-normed spaces, Math. Nachr. 28 (1964), 1-43.
[12] F. Gezer, S. Karakuş, \mathcal{I} and \mathcal{I}^{*} convergent function sequences, Math. Commun. 10 (2005), 71-80.
[13] A. Gökhan, M. Güngör and M. Et, Statistical convergence of double sequences of real-valued functions, Int. Math. Forum, 2(8) (2007), 365-374.
[14] H. Gunawan, M. Mashadi, On n-normed spaces, Int. J. Math. Math. Sci. 27 (10) (2001), 631-639.
[15] H. Gunawan, M. Mashadi, On finite dimensional 2-normed spaces, Soochow J. Math. 27 (3) (2001), 321-329.
[16] M. Gürdal, S. Pehlivan, The statistical convergence in 2-Banach spaces, Thai J. Math. 2 (1) (2004), 107-113.
[17] M. Gürdal, S. Pehlivan, Statistical convergence in 2-normed spaces, Southeast Asian Bulletin of Mathematics, 33 (2009), 257-264.
[18] M. Gürdal, I. Açık, On I-Cauchy sequences in 2-normed spaces, Math. Inequal. Appl. 11 (2) (2008), 349-354.
[19] M. Gürdal, On ideal convergent sequences in 2-normed spaces, Thai J. Math. 4 (1) (2006), 85-91.
[20] P. Kostyrko, T. S̆alát, W. Wilczyński, I-convergence, Real Anal. Exchange 26 (2) (2000), 669-686.
[21] M. Mursaleen, S.A. Mohiuddine, On ideal convergence in probabilistic normed spaces, Math. Slovaca 62 (2012), 49-62.
[22] M. Mursaleen, A. Alotaibi, On \mathcal{I}-convergence in random 2-normed spaces, Math. Slovaca 61 (6) (2011), 933-940.
[23] F. Nuray, W.H. Ruckle, Generalized statistical convergence and convergence free spaces, J. Math. Anal. Appl. 245 (2000), 513-527.
[24] S. Sarabadan, S. Talebi, Statistical convergence and ideal convergence of sequences of functions in 2-normed spaces, Internat. J. Math. Math. Sci. 2011 (2011), 10 pages.
[25] E. Savaş, M. Gürdal, Ideal Convergent Function Sequences in Random 2-Normed Spaces, Filomat, 30(3) (2016), 557-567.
[26] I.J. Schoenberg, The integrability of certain functions and related summability methods, Amer. Math. Monthly 66 (1959), 361-375.
[27] A. Sharma, K. Kumar, Statistical convergence in probabilistic 2-normed spaces, Mathematical Sciences, 2(4) (2008), 373-390.
[28] A. Şahiner, M. Gürdal, S. Saltan, H. Gunawan, Ideal convergence in 2-normed spaces, Taiwanese J. Math. 11 (2007), 1477-1484.
[29] B.C. Tripathy, M. Sen, S. Nath, I-convergence in probabilistic n-normed space, Soft Comput. 16 (2012), 1021-1027.
[30] S. Yegül, E. Dündar, On Statistical Convergence of Sequences of Functions In 2-Normed Spaces, (Under Communication).

Department of Mathematics, Afyon Kocatepe University, 03200 Afyonkarahisar, Turkey

E-mail address: erdincdundar79@gmail.com and edundar@aku.edu.tr
İhsaniye Anadolu İmam Hatip Lisesi, 03370 Afyonkarahisar, Turkey
E-mail address: mkddsrsln@gmail.com

