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Abstract: In this study, we give definitions of Wijsman quasi-lacunary invari-
ant convergence, Wijsman strongly quasi-lacunary invariant convergence and
Wijsman quasi-lacunary invariant statistically convergence for sequences of sets.
We also examine the existence of some relations among these definitions and
some convergence types for sequences of sets given in [7, 14], too.

1. INTRODUCTION AND BACKGROUNDS

The concept of statistical convergence was firstly introduced by Fast [4] and this concept has been studied by
Šalát [18], Fridy [5] and many others, too.
A sequence x = (xk) is statistically convergent to L if for every ε > 0

lim
n→∞

1
n

∣∣∣
{

k ≤ n : |xk−L| ≥ ε
}∣∣∣= 0,

where the vertical bars indicate the number of elements in the enclosed set.
By a lacunary sequence we mean an increasing integer sequence θ = {kr} such that k0 = 0 and
hr = kr − kr−1 → ∞ as r → ∞. Throughout this study the intervals determined by θ will be denoted by
Ir = (kr−1,kr].
Then, Fridy and Orhan [6] defined lacunary statistical convergence of a sequence using the lacunary sequence
concept as follows:
Let θ = {kr} be a lacunary sequence. A sequence x = (xk) is lacunary statistically convergent to L if for every
ε > 0,

lim
r→∞

1
hr

∣∣∣
{

k ∈ Ir : |xk−L| ≥ ε
}∣∣∣= 0.

Several authors have studied on the concepts of invariant mean and invariant convergent (see, [9–11, 17, 19, 22]).
Let σ be a mapping of the positive integers into themselves. A continuous linear functional φ on `∞, the space
of real bounded sequences, is said to be an invariant mean or a σ -mean if it satisfies following conditions:

1. φ(x)≥ 0, when the sequence x = (xn) has xn ≥ 0 for all n,

2. φ(e) = 1, where e = (1,1,1, ...) and

3. φ(xσ(n)) = φ(xn) for all x ∈ `∞.
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The mappings σ are assumed to be one-to-one and such that σm(n) 6= n for all positive integers n and m, where
σm(n) denotes the m th iterate of the mapping σ at n. Thus, φ extends the limit functional on c, the space
of convergent sequences, in the sense that φ(x) = limx for all x ∈ c. In the case σ is translation mappings
σ(n) = n+1, the σ -mean is often called a Banach limit.
The space of lacunary strong σ -convergent sequences Lθ was defined by Savaş [20] as below:

Lθ =

{
x = (xk) : lim

r→∞

1
hr

∑
k∈Ir

|xσ k(m)−L|= 0, uniformly in m

}
.

Pancaroǧlu and Nuray [15] introduced the concept of lacunary invariant summability as follows:
Let θ = {kr} be a lacunary sequence. A sequence x = (xk) is said to be lacunary invariant summable to L if

lim
r→∞

1
hr

∑
k∈Ir

xσ k(m) = L,

uniformly in m.
The concept of lacunary σ -statistically convergent sequence was defined by Savaş and Nuray in [21] as below:
Let θ = {kr} be a lacunary sequence. A sequence x = (xk) is Sσθ -convergent to L if for every ε > 0

lim
r→∞

1
hr

∣∣∣
{

k ∈ Ir : |xσ k(m)−L| ≥ ε
}∣∣∣= 0,

uniformly in m.
Let X be any non-empty set and N be the set of natural numbers. The function

f : N→ P(X)

is defined by f (k) =Ak ∈P(X) for each k∈N, where P(X) is power set of X . The sequence {Ak}= (A1,A2, . . .),
which is the range’s elements of f , is said to be sequences of sets.
Let (X ,ρ) be a metric space. For any point x ∈ X and any non-empty subset A of X , the distance from x to A is
defined by

d(x,A) = inf
a∈A

ρ(x,a).

Throughout the paper we take (X ,ρ) as a metric space and A,Ak as any non-empty closed subsets of X .
There are different convergence notions for sequence of sets. One of them handled in this paper is the concept
of Wijsman convergence (see, [1–3, 12, 16, 25, 26]).
A sequence {Ak} is said to be Wijsman convergent to A if for each x ∈ X ,

lim
k→∞

d(x,Ak) = d(x,A)

and denoted by Ak
W→ A.

A sequence {Ak} is said to be bounded if for each x ∈ X , supk
{

d(x,Ak)
}
< ∞.

The set of all bounded sequences of sets is denoted by L∞.
The concepts of Wijsman lacunary summability, Wijsman strongly lacunary summability and Wijsman lacunary
statistical convergence were introduced by Ulusu and Nuray [23, 24].
Using the invariant mean concept, the concepts of Wijsman lacunary invariant convergence, Wijsman strongly
lacunary invariant convergence and Wijsman lacunary invariant statistical convergence were also defined by
Pancaroǧlu and Nuray [16] as follows:
Let θ = {kr} be a lacunary sequence. A sequence {Ak} is said to be Wijsman lacunary invariant convergent to
A if for each x ∈ X ,

lim
r→∞

1
hr

∑
k∈Ir

d(x,Aσk(m)) = d(x,A)

uniformly in m.
A sequence {Ak} is said to be Wijsman strongly lacunary invariant convergent to A if for each x ∈ X ,

lim
r→∞

1
hr

∑
k∈Ir

∣∣d(x,Aσ k(m))−d(x,A)
∣∣= 0

uniformly in m.
A sequence {Ak} is said to be Wijsman lacunary invariant statistically convergent to A if for every ε > 0 and
each x ∈ X ,

lim
r→∞

1
hr

∣∣∣
{

k ∈ Ir : |d(x,Aσ k(m))−d(x,A)| ≥ ε
}∣∣∣= 0
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uniformly in m.
The idea of quasi-almost convergence in a normed space was introduced by Hajduković [8]. Then, Nuray [13]
studied concepts of quasi-invariant convergence and quasi-invariant statistical convergence in a normed space.
Recently, Gülle and Ulusu [7] introduced the concept of Wijsman strongly quasi-invariant convergence for
sequences of sets as below:
A sequence {Ak} is said to be Wijsman strongly quasi-invariant convergent to A if for each x ∈ X ,

lim
p→∞

1
p

p−1

∑
k=0

∣∣dx(Aσ k(np))−dx(A)
∣∣= 0

uniformly in n where dx(Aσ k(np)) = d(x,Aσk(np)) and dx(A) = d(x,A). It is denoted by Ak
[WQVσ ]−→ A.

2. MAIN RESULTS

In this study, we give definitions of Wijsman quasi-lacunary invariant convergence, Wijsman strongly
quasi-lacunary invariant convergence and Wijsman quasi-lacunary invariant statistically convergence for se-
quences of sets. We also examine the existence of some relations among these definitions and some convergence
types for sequences of sets given in [7, 14], too.
Definition 2.1 Let θ = {kr} be a lacunary sequence. A sequence {Ak} is said to be Wijsman quasi-lacunary
invariant convergent to A if for each x ∈ X ,

lim
r→∞

∣∣∣∣
1
hr

∑
k∈Ir

dx(Aσk(nr))−dx(A)
∣∣∣∣= 0

uniformly in n. In this case, we write Ak
WQVσθ−→ A.

Theorem 2.2 If a sequence {Ak} is Wijsman lacunary invariant convergent to A, then {Ak} is Wijsman
quasi-lacunary invariant convergent to A.

Proof. Suppose that the sequence {Ak} is Wijsman lacunary invariant convergent to A. Then, for each x ∈ X
and every ε > 0 there exists an integer r0 > 0 such that for all r > r0

∣∣∣∣∣
1
hr

∑
k∈Ir

dx(Aσk(m))−dx(A)

∣∣∣∣∣< ε,

for all m. If m is taken as m = nr, then we have
∣∣∣∣∣

1
hr

∑
k∈Ir

dx(Aσ k(nr))−dx(A)

∣∣∣∣∣< ε,

for all n. Since ε > 0 is an arbitrary, the limit is taken for r→ ∞ we can write
∣∣∣∣∣

1
hr

∑
k∈Ir

dx(Aσk(nr))−dx(A)

∣∣∣∣∣−→ 0

for all n. That is, the sequence {Ak} is Wijsman quasi-lacunary invariant convergent to A.

Definition 2.3 Let θ = {kr} be a lacunary sequence. A sequence {Ak} is Wijsman quasi-lacunary invariant
statistically convergent to A if for every ε > 0 and each x ∈ X ,

lim
r→∞

1
hr

∣∣∣
{

k ∈ Ir : |dx(Aσk(nr))−dx(A)| ≥ ε
}∣∣∣= 0

uniformly in n. In this case, we write Ak
WQSσθ−→ A.

Theorem 2.4 If a sequence {Ak} is Wijsman lacunary invariant statistically convergent to A, then {Ak} is
Wijsman quasi-lacunary invariant statistically convergent to A.

Proof. Suppose that the sequence {Ak} is Wijsman lacunary invariant statistically convergent to A. In this case,
when δ > 0 is given, for each x ∈ X and for every ε > 0 there exists an integer r0 > 0 such that for all r > r0

1
hr

∣∣∣
{

k ∈ Ir : |dx(Aσ k(m))−dx(A)| ≥ ε
}∣∣∣< δ ,
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for all m.
If m is taken as m = nr, then we have

1
hr

∣∣∣
{

k ∈ Ir : |dx(Aσ k(nr))−dx(A)| ≥ ε
}∣∣∣< δ ,

for all n. Since δ > 0 is an arbitrary, we have

lim
r→∞

1
hr

∣∣∣
{

k ∈ Ir : |dx(Aσ k(nr))−dx(A)| ≥ ε
}∣∣∣= 0,

for all n which means that {Ak} is Wijsman quasi-lacunary invariant statistically convergent to A.

Definition 2.5 Let θ = {kr} be a lacunary sequence. A sequence {Ak} is Wijsman strongly quasi-lacunary
invariant convergent to A if for each x ∈ X ,

lim
r→∞

1
hr

∑
k∈Ir

∣∣∣dx(Aσk(nr))−dx(A)
∣∣∣= 0

uniformly in n. In this case, we write Ak
[WQVσθ ]−→ A.

Theorem 2.6 For any lacunary sequence θ = {kr},

Ak
[WQVσθ ]−→ A⇔ Ak

[WQVσ ]−→ A.

Proof. Let Ak
[WQVσθ ]−→ A and ε > 0 is given. Then, there exists an integer r0 such that for each x ∈ X

1
hr

hr−1

∑
k=0

∣∣dx(Aσk(nr))−dx(A)
∣∣< ε

for r ≥ r0 and nr = kr−1 +1+w, w≥ 0. Let p≥ hr. Thus, p can be written as p = α.hr +θ where 0≤ θ ≤ hr
and α is an integer. Since p≥ hr, α ≥ 1. Then,

1
p

p−1

∑
k=0

∣∣∣dx(Aσk(np))−dx(A)
∣∣∣ ≤ 1

p

(α+1)hr−1

∑
k=0

∣∣∣dx(Aσk(nr))−dx(A)
∣∣∣

=
1
p

α

∑
j=0

( j+1)hr−1

∑
k= jhr

∣∣∣dx(Aσ k(nr))−dx(A)
∣∣∣

≤ 1
p

ε hr (α +1)

≤ 2αhrε
p

(α ≥ 1).

For
hr

p
≤ 1 and since

αhr

p
≤ 1

1
p

p−1

∑
k=0

∣∣∣dx(Aσ k(np))−dx(A)
∣∣∣≤ 2ε,

that is, Ak
[WQVσ ]−→ A.

Let Ak
[WQVσ ]−→ A and ε > 0 is given. Then, there exists P > 0 such that for each x ∈ X

1
p

p−1

∑
k=0

∣∣∣dx(Aσk(np))−dx(A)
∣∣∣< ε

for all p > P. Since θ = {kr} is a lacunary sequence, a number R > 0 can be chosen such that hr > P where
r ≥ R. Thereby

1
hr

∑
k∈Ir

∣∣∣dx(Aσ k(nr))−dx(A)
∣∣∣< ε,

that is, Ak
[WQVσθ ]−→ A. The proof of theorem is completed.
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