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Abstract 

In this study, we have established upper and lower bounds for the  p   norms of the matrices  T   and  

H where T  and H are Quaternion Cauchy-Toeplitz and Quaternion Cauchy-Hankel Matrices 
respectively. 
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Özet 

Bu çalışmada,  T   ,  H   sırasıyla Quaternion Cauchy-Toeplitz ve Quaternion Cauchy-Hankel Matrisleri 

olmak üzere,  T   ve  H   matrislerinin  p   normlar için alt ve üst sınırlar elde ettik. 
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1.Introduction and Preliminaries 
 
In quantum physic, the family of quaternions plays 
an important role. But in mathematics they 
generally play a role in algebraic systems, skew 
fields or noncommutative division algebras, 
matrices in commutative rings take attention but, 
matrices with quaternion entries has not been 
investigated very much yet. But in recent times 
quaternions are in order of day. 
The main obstacles in the study of quaternion 

matrices, as expected come from the 

noncommutative multiplication of quaternions. 

One will find that working on a quaternion matrix 

problem is often equivalent to dealing with a pair 

of complex matrices [Zhang(1997), Lee(1949)]. 

Recently, the studies concern with matrices norms, 

has been given by several authors, see for instance 

[Moenck(1977),Mathias(1990),Visick(2000),Zielke 

(1988),Horn and Johnson(1991),Bozkurt(1998), 

Bozkurt(1996),Bozkurt(1996),Türkmen and Bozkurt 

(2002)] and references cited therein. In this paper, 

we have obtained some a lower and an upper 

bounds for the p  of Quaternion Cauchy-Toeplitz 

and Quaternion Cauchy-Hankel Matrices. Now, we 

need the following definitions and preliminaries. 

Definition 1. Let C and R denote the fields of the 
complex and real numbers respectively. Let Q be a 
four-dimensional vector space over R with an 

ordered basis, denoted by jie ,,  and k . A real 

quaternion, simply called quaternion, is a vector 

kjie 3210 xxxxx  Q
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with real coefficients 210 ,, xxx  and 3x . 

Besides the addition and the scalar multiplication 
of the vector space Q over R, the product of any 

two quaternions jie ,,  and k  are defined by the 

requirement that e  act as a identity and by the 
table 

1222  kji  

 

.,, jikkiikjjkkjiij   

Let nmM  (Q), simply nM (Q) when nm  , 

denote the collection of all nm  matrices with 
quaternion entries. 

Definition 2. Let nMAAA  j21 (Q), where 

21, AA  are nn  complex matrices. We shall call 

the nn 22   complex matrix 

,
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uniquely determined by A , the complex adjoint 

matrix or adjoint of the quaternion matrix A  
[Lee(1949)]. 
Now we give some preliminaries related to our 

study. Let A  be any nn  matrix. The p  norms 

of the matrix A  are defined as 
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The well-known Euclidean norm of matrix A  is 
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and also the spectral norm of matrix A  is 

)(max
12

AAA H

i
ni



  

where A  is nm  and  HA  is the conjugate 
transpose of the matrix A . The following 
inequality holds: 
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[Zielke(1988)]. A function   is called a psi (or 
digamma) function if  
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The n  th derivatives of a   function is called a 
polygamma function 
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If 0n  then  )(ln)(),0( xxx
dx
d  . On 

the other hand, if 0a , b  is any number and n  is 
positive integer, then  

0),(lim)4.1( 
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[Moencko(1977)]. Throughout the paper Z   and 

R   will represent the sets of positive integers and 
positive real numbers, respectively. 
 

2. Matrices of Quaternion Cauchy-Toeplitz 
and Quaternion Cauchy-Hankel 
 
Definition 3. The matrices in x  quaternion which 
definitions have gave from Definition 1, for  

mlt ,,2  Z   and np ,,2,1  , nr ,,2,1   

and 
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is called Quaternion Cauchy-Toeplitz matrix. By the 
similar way 
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is called Quaternion Cauchy-Hankel matrix. 
In this section we are going to find upper and lower 

bounds for the Euclidean norm and the p   norms 

of Quaternion Cauchy-Toeplitz and Quaternion 
Cauchy-Hankel matrices in (2.1) and (2.2). 
 

2.1. The p  Norms of Quaternion Cauchy-Toeplitz 

and Quaternion Cauchy-Hankel Matrices 
 
Lets give some upper and lower bounds following 

theorem, for p  norms, of in definition (2.1) and 

(2.2) Quaternion Cauchy-Toeplitz and Quaternion 
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Cauchy-Hankel matrices.  

Theorem 1. For p  norm of definition (2.1) 

Quaternion Cauchy-Toeplitz matrix  mlt ,,2  Z   

let p  be positive even integer 
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are valid as upper and lower bounds. 
 

Proof From definition p  norm 
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is written. If we divide both of side of equality with n  and if take a limit for n  . 
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is written and we obtain, 
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in this case, if we take a root of p. degree both of side of (2.6) inequality. We obtain, 
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it's already upper bound for 
p

Tn p
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. 

Lets obtain lower bound now. Let p  be positive even integer, if we throw out first term of (2.5), right hand 

has been gotten smaller, so 
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 If we take a limit for n . 
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is obtained. It's already lower bound for 
p

Tn p

1
. Hence, proof has been completed from (2.6) and (2.7). 

Theorem2. For p  norm of definition(2.2) Quaternion Cauchy-Hankel matrix mlt ,,2  Z   let p  be 

positive even integer 
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is valid for upper bound. 

Proof. From definition of p  norm 
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if we compute sum where both of side of equality. We obtain 
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if we take limit of (2.8) for n . We use properties of polygamma function.  
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from equalities of (2.9) and (2.10). If we root of .p  both of side of inequality, we obtain 
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Hence, the proof is completed. 
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