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Abstract 

Large eddy simulation of turbulent Rayleigh-Bénard convection was carried out to assess various 

algebraic eddy viscosity subgrid-scale models: (i) Smagorinsky with Wall-Damping, (ii) Dynamic 

Smagorinsky, (iii) Wall-Adapting Local Eddy-Viscosity, (iv) Vreman, (v) Mixed-Scale, and (vi) a buoyancy-

modified Mixed-Scale model that accounts for the buoyancy effects from subgrid-scales. The last model 

is proposed for the first time in this study. Non-dissipative, kinetic energy conserving, fully implicit 

method was employed for simulations. To evaluate the models, mean and turbulent (both low- and 

high-order) flow diagnostics were computed. Some advanced turbulent statistics such as skewness, 

turbulent heat flux, subgrid-scale kinetic energy and Nusselt number were also calculated and 

compared with each other and against a reference solution. Since models differ from each other by 

means of turbulent generation terms, they have their own strengths and weaknesses which are 

particularly observed in the near-wall treatments. Additionally, unlike the others, the Dynamic 

Smagorinsky model computes the subgrid-scale viscosity coefficient dynamically which has some 

effects on results. Overall, the Mixed-Scale and its new, buoyancy-modified variant show different 

characteristics and mostly the best agreement with Direct Numerical Simulation data. They are also 

found computationally less expensive. Moreover, buoyancy enhancement in the new model slightly 

improves the predictions of Mixed-Scale model. Although relatively poor performance by the Dynamic 

Smagorinsky model is observed especially in estimating the integrated Nusselt number, it captures the 

turbulent heat flux more accurately than the others. A more detailed discussion on the model's 

performance based on evaluations are also made.  

 

Türbülanslı Rayleigh-Bénard Taşınım Probleminin Büyük Girdap 
Benzetimi: Ağaltı-ölçek Modellerinin Değerlendirilmesi  

Anahtar kelimeler 

Hesaplamalı akışkanlar 

dinamiği; Türbülans 

modellemesi; Büyük 

girdap benzetimi; 

Ağaltı-ölçek modeli; 

Rayleigh-Bénard 

Taşınımı; Türbülanslı 

taşınım 

Öz 

Bu çalışmada türbülanslı Rayleigh-Bénard ısıl taşınım problemi büyük girdap benzetimi metodu ile 6 
farklı ağaltı-ölçek modeli kullanılarak gerçekleştirilmiştir. Bu modeller; (i) Smagorinsky (duvar 
sönümleme fonksiyonu da  içeren), (ii) Dinamik Smagorinsky, (iii) Wall-Adapting Local Eddy-Viscosity, 
(iv) Vreman, (v) Mixed-Scale, ve (vi) ilk defa bu çalışmada önerilen ve ağaltı ölçeklerden gelen türbülanslı 
kaldırma kuvveti etkilerini de içerecek şekilde, terimleri yeniden düzenlenmiş ve zenginleştirilmiş olan 
değiştirilmiş-Mixed-Scale modelidir. Benzetimlerde sönümleme içermeyen, kinetik enerjiyi koruyan ve 
zamanda tamamıyla kapalı bir sayısal ayrıklaştırma algoritması kullanılmıştır. Modellerin 
değerlendirilmesi için, akışın ortalama ve türbülanslı büyüklükleri (hem düşük hem de yüksek mertebeli) 
hesaplanmıştır. Ayrıca, asimetri, türbülanslı ısı akısı, ağaltı-ölçek kinetik enerjisi ve Nusselt sayısı gibi 
ilave pek çok ileri seviye, türetilmiş türbülans parametresi de hesaplanmış ve karşılaştırmalarda 
kullanılmıştır. Bunlara ilişkin detaylı analizlere bu kapsamlı çalışmada yer verilmiştir. Elde edilen 
sonuçlar, her modelin zayıf ve güçlü yanlarını ortaya çıkarmıştır. Modeller arası farklılıkların özellikle 
duvara yakın bölgelerde kendini gösterdiği ortaya konmuştur. Genel olarak, Mixed-Scale ve ona dayalı 
olarak önerilen yeni modelin performanslarının, Doğrudan Sayısal Benzetim metodu ile daha iyi bir 
uyum içerisinde olduğu gözlemlenmiştir. Bu iki model ayrıca daha kısa sürede sonuç vermesi sebebiyle 
de sayısal hesaplama maliyeti açısından avantajlıdır. Kaldırma kuvveti etkilerini de içeren yeni modele 
ait sonuçlarının asıl modele oranla görece bir iyileşme içerdiği de görülmektedir. 
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1. Introduction 

Turbulent flows are characterized by rotational flow 

structures, so-called eddies, which have a broad 

range of length and time scales (Pope 2000). Larger 

eddies show highly anisotropic behavior and carry 

most of the energy. However, smaller ones are more 

isotropic and less energy-carrying. Large Eddy 

Simulation (LES) is based on this observation. Unlike 

the Direct Numerical Simulation (DNS) which tries to 

resolve all the scales by very fine grid sizes, LES 

filters out the smaller scales and resolves only the 

larger ones (Sagaut 2001). This is done by applying a 

filtering function. To separate the scales, the 

filtering function uses a cut-off length scale. 

Contributions which come from the remaining 

unresolved scales are modelled in LES. Top-hot or 

Box filter are widely utilized as filtering functions. It 

is also very common to take grid size as the cut-off 

length. Due to this choice, unresolved scales are 

frequently termed as subgrid-scales (sgs).   

 

Eddy viscosity or turbulent viscosity is one of the 

most employed approaches used to model to sgs 

effects based on Boussinesq hypothesis. Unresolved 

scale contributions which arise as extra stress terms 

in the filtered momentum equations are taken 

proportional to the resolved strain rate with a sgs 

viscosity coefficient. A similar procedure, which is 

described as eddy diffusivity, is also used in the 

filtered energy equation to model the unresolved 

temperature field. Then, modeling is simply reduced 

to a problem of determining the sgs viscosity which 

can be done in various ways.  

 

Among the sgs models, zero-equation (ie., algebraic) 

ones provide an efficient way to compute sgs 

viscosity. Various approaches have been proposed 

beginning from the 60's. The first model was 

developed by Smagorinsky (1963). Smagorinsky 

model was then reformulated to compute sgs 

viscosity dynamically (Yang and Ferziger 1993). 

Other widely used examples are the Wall-Adapting 

Local Eddy-Viscosity (WALE) model developed by 

Nicoud and Ducros (1999), Mixed-Scale model by 

Sagaut (1996) and a sgs model by Vreman (2004). It 

is possible to further extend the list. The main 

differences rely on calculating the turbulent 

generation term. It is an advanced differential 

operator which controls the contribution of sgs 

effects and mainly based on the various tensor fields 

formed by the velocity gradients. Some further 

details on the models are also provided in Sec. 2. 

 

Turbulent thermal convection is a very challenging 

problem and characterized by complex physical 

interactions (Getling 1998). To properly simulate it 

using LES, a model which is capable of turbulent 

generation due buoyancy effects is required. The 

first attempt to develop such a model was made by 

Eidson (1985). Eidson enhanced the turbulent 

generation term due shear in Smagorinsky model by 

adding a buoyancy production. Peng and Davidson 

(1998) further reformulated his model to obtain a 

proper time scaling behavior that prevents possible 

non-physical solutions. A buoyancy-adjusted 

stretched-vortex sgs model was recently proposed 

by Chung and Matheou (2014) as an all-in-one 

model. Some other attempts on the sgs modeling of 

turbulent buoyant flows were also made. For a 

review, please refer to Peng and Davidson (1998) 

and Chung and Matheou (2014). In fact, this is still 

an active research area. Some of the more recent 

efforts can also be found, for instance, in Dabbagh 

et al. (2016) and Ranjan et al. (2020). 

 

The main aim of this study is to evaluate the 

predicting capabilities of the above-mentioned 

algebraic sgs models in LES modeling of turbulent 

Rayleigh-Bénard convection (RBC). By doing so, 

subgrid-scale algebraic model benchmarking on a 

specific case is performed. Proposing an algebraic 

model, in the context of this work, is further aimed 

to improve the estimations. To achieve this goal, the 

terms of the Mixed-Scale model is reformulated to 

recognize the unstable thermal stratification, and by 

this way to better capture the unresolved thermal 

effects which enhance turbulence. 

The remaining part of the manuscript is organized as 

follows. Numerical methodology including the LES 

equations, sgs models, solution algorithm and solver 
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details are given in Sec. 2. Problem description and 

numerical setup are described in Sec. 3. Results are 

presented and comprehensively discussed in Sec. 4. 

Finally, conclusions are made in Sec. 5. 

 

2. Numerical Methodology 

2.1 LES equations 

The non-dimensional, Favre-filtered LES equations 

with gravity read  

∂ρ

∂t
+

∂(ρ̅𝑢̃𝑗)

∂𝑥𝑗
= 0 (1) 

∂(ρ̅𝑢̃𝑖)

∂𝑡
+

∂(ρ̅𝑢̃𝑖𝑢̃𝑗)

∂𝑥𝑗

= −
∂𝑝

∂𝑥𝑖
+

1

𝑅𝑒

∂τ𝑖𝑗

∂𝑥𝑗

+
∂τ𝑖𝑗

𝑠𝑔𝑠

∂𝑥𝑗
+

1

𝐹𝑟2
ρ𝑔𝑖 

(2) 

𝑀𝑟
2 [

𝜕

𝜕𝑡
(𝑝̅ + (𝛾 − 1) (

1

2
𝜌̅𝑢̃𝑖𝑢̃𝑖))

+
𝜕

𝜕𝑥𝑗
(𝛾𝑝̅

+ (𝛾

− 1) (
1

2
𝜌̅𝑢̃𝑖𝑢̃𝑖)) 𝑢̃𝑗]

+
𝜕𝑢̃𝑗 

𝜕𝑥𝑗

= (𝛾

− 1)𝑀𝑟
2 [

1

𝑅𝑒

𝜕(𝜏̃𝑖𝑗𝑢̃𝑖) 

𝜕𝑥𝑗

+
𝜕(𝜏𝑖𝑗

𝑠𝑔𝑠
𝑢̃𝑖) 

𝜕𝑥𝑗
]

+
𝜕

𝜕𝑥𝑗
(

𝜇

𝑅𝑒𝑃𝑟

𝜕𝑇̃

𝜕𝑥𝑗

− 𝑞𝑖𝑗
𝑠𝑔𝑠

) +
𝐸𝑐

𝐹𝑟2
(𝜌̅𝑢̃𝑖𝑔𝑖) 

(3) 

where 𝑥𝑗 , 𝑡, ρ, 𝑔 and 𝑢𝑖  denote 𝑗𝑡ℎ co-ordinate 

direction, time, density, gravity, and velocity in the 

𝑥𝑖  direction, respectively (Yilmaz et al. 2018). ( ̅ ) 

and ( ̃ ) are also used to represent the filtered and 

Favre-filtered variables. Additionally, 𝑀𝑟 , 𝐸𝑐, 𝑅𝑒 

and 𝐹𝑟 are the Mach (reference), Eckert, Reynolds, 

and Froude numbers in their usual meanings, 

respectively. 

 

In the above set of equations, τ𝑖𝑗
𝑠𝑔𝑠

 and 𝑞𝑗
𝑠𝑔𝑠

 

represent the sgs stress tensor and the sgs heat flux 

term, respectively. τ𝑖𝑗
𝑠𝑔𝑠

 is modeled using the eddy-

viscosity assumption in which it is related to the 

resolved strain rate via the sgs dynamic viscosity, 

𝜇𝑠𝑔𝑠, as 

τ𝑖𝑗
𝑠𝑔𝑠

= 𝜇𝑠𝑔𝑠 (2𝑆𝑖𝑗 −
2

3

∂𝑢̃𝑘

∂𝑥𝑘
δ𝑖𝑗) (4) 

μ𝑠𝑔𝑠 is further modeled via a sgs model which will 

be presented in the following subsection. 

 

The sgs heat flux term is also modeled using the 

gradient approximation (also known as the eddy-

diffusivity hypothesis) as 

𝑞𝑗
𝑠𝑔𝑠

= −
𝜇𝑠𝑔𝑠

𝑃𝑟𝑠𝑔𝑠

∂𝑇̃

∂𝑥𝑗
 (5) 

where 𝑃𝑟𝑠𝑔𝑠  is the sgs Prandtl number usually taken 

as 0.8. 

 

Then, the final form of the Favre-filtered, non-

dimensional momentum and energy equations 

become 

∂(ρ̅𝑢̃𝑖)

∂t
+

∂(𝜌̅𝑢̃𝑖𝑢̃𝑗)

∂𝑥𝑗

= −
∂𝑝̅

∂𝑥𝑖

+
∂

∂𝑥𝑗
[(

𝜇

𝑅𝑒

+ 𝜇𝑠𝑔𝑠) (2𝑆𝑖𝑗

−
2

3

∂𝑢̃𝑘

∂𝑥𝑘
δ𝑖𝑗)] +

1

𝐹𝑟2
ρ̅𝑔𝑖  

(6) 

and 
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𝑀𝑟
2 [

𝜕

𝜕𝑡
(𝑝̅ + (𝛾 − 1) (

1

2
𝜌̅𝑢̃𝑖𝑢̃𝑖))

+
𝜕

𝜕𝑥𝑗
(𝛾𝑝̅

+ (𝛾

− 1) (
1

2
𝜌̅𝑢̃𝑖𝑢̃𝑖)) 𝑢̃𝑗]

+
𝜕𝑢̃𝑗 

𝜕𝑥𝑗

= (𝛾

− 1)𝑀𝑟
2

𝜕 

𝜕𝑥𝑗
[(

𝜇

𝑅𝑒

+ 𝜇𝑠𝑔𝑠) (2𝑆𝑖𝑗

−
2

3

𝜕𝑢̃𝑘 

𝜕𝑥𝑘
𝛿𝑖𝑗) 𝑢̃𝑖]

+
𝜕

𝜕𝑥𝑗
[(

𝜇

𝑅𝑒𝑃𝑟

+
𝜇𝑠𝑔𝑠

𝑃𝑟𝑠𝑔𝑠
)

𝜕𝑇̃

𝜕𝑥𝑗
]

+
𝐸𝑐

𝐹𝑟2
(𝜌̅𝑢̃𝑖𝑔𝑖) 

(7) 

respectively. Finally, the equation of state is also 

introduced in its Favre-filtered, non-dimensional 

form as 

ρ̅𝑇̃ = γ𝑀𝑟
2𝑝 + 1 (8) 

 

2.2 Subgrid-scale models 

Now, problem reduces to modeling μ𝑠𝑔𝑠. Algebraic 

(zero-equation) eddy viscosity sgs models are 

considered in this study. 

In the Smagorinsky model, μ𝑠𝑔𝑠 is obtained via  

 

𝜇𝑠𝑔𝑠 = ρ̅(𝐶𝑠𝑙𝑚)2|𝑆̅| (9) 

 

where |𝑆̅| = √2𝑆𝑖̅𝑗𝑆𝑖̅𝑗  is the magnitude of the 

strain-rate tensor. 𝑙𝑚 is the the characteristic length 

scale of the resolved eddies set to grid spacing Δ =

(𝑣𝑜𝑙𝑢𝑚𝑒)
1

3. The Smagorinsky constant, 𝐶𝑠, is taken 

as 0.1. To improve the model's behavior near wall 

regions, 𝑙𝑚 should be adjusted by a wall model or a 

function. In the wall-damping Smagorinsky model 

(hereafter SmaWD) 𝑙𝑚 reads 

 

𝑙𝑚 = min(𝐶𝑠 ∗ Δ, 𝑘𝑣 ∗ 𝑑𝑤) (10) 

where 𝑘𝑣  is the von Karman constant set to 0.41 and 

𝑑𝑤 is the normal distance to the nearest wall.  

 

The dynamic Smagorinsky model (hereafter 

DynSma) implemented here is the one proposed by 

Yang and Ferziger (1993). It uses the same analogy 

as Smagorinsky model. However, 𝐶𝑠 is determined 

dynamically using a test filter as 

 

 𝐶𝑠 =
1

2
=

𝐷𝑖𝑗𝑃𝑖𝑗

𝑃𝑖𝑗𝑃𝑖𝑗
 (11) 

Here,  

 

𝐷𝑖𝑗 = 𝑇𝑖𝑗 − τ̃𝑖𝑗  (12) 

𝑇𝑖𝑗 −
δ𝑖𝑗

3
𝑇𝑘𝑘 = −2𝐶𝑠

2Δ̃2|𝑆̅̃|𝑆̅̃
𝑖𝑗 (13) 

 

𝑃𝑖𝑗 = Δ2|𝑆̅|𝑆𝑖̅𝑗
̃ − Δ̃2|𝑆̅̃|𝑆̃̅𝑖𝑗 (14) 

where ( ̃ ) denotes the test filter which is taken as 

twice the grid filter and 𝑇𝑖𝑗  is the sgs stresses on the 

test filter. This model allows back-scattering, i.e., 

negative 𝐶𝑠, from the small scales to the resolved 

flow and mostly needs numerical clipping to 

stabilize the solution. 

 

WALE model employs the traceless symmetric part 

of the square of the velocity gradient tensor which 

reads  

𝑆𝑖𝑗
𝑑 =

1

2
(𝑔̅𝑖𝑗

2 + 𝑔̅𝑗𝑖
2 ) −

1

3
δ𝑖𝑗𝑔̅𝑘𝑘

2  (15) 

and calculates μ𝑠𝑔𝑠 using 
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𝜇𝑠𝑔𝑠

= ρ̅(𝐶𝑤Δ)2
(𝑆𝑖𝑗

𝑑 𝑆𝑖𝑗
𝑑 )

3/2

(𝑆𝑖̅𝑗𝑆𝑖̅𝑗)
5/2

+ (𝑆𝑖𝑗
𝑑 𝑆𝑖𝑗

𝑑 )
5/4

 
(16) 

with 𝐶𝑤 = 0.33. 

 

Vreman model is also an eddy-viscosity model that 

has the following algebraic relation  

 

𝜇𝑠𝑔𝑠 = ρ̅𝐶𝑣√
𝐵β

α𝑖𝑗α𝑖𝑗
 (17) 

with  

 

𝐶𝑣 = 2.5𝐶𝑠
2 

𝐵β = β11β12 − β12
2 + β11β33 − β13

2

+ β22β33 − β23
2  

β𝑖𝑗 = Δ𝑚
2 α𝑚𝑖α𝑚𝑗  

α𝑖𝑗 =
∂𝑢̅𝑗

∂𝑥𝑖
 

(18) 

Another model introduced here is the Mixed-scale 

model (hereafter MS) by Sagaut (1996) as  

 

𝜇𝑠𝑔𝑠 = ρ̅𝐶𝑚Δ1+α|𝑆̅|𝑞(1−α)/2 (19) 

where 𝐶𝑚  is the model constant computed as 

𝐶𝑞
1−α𝐶𝑠

2α. 𝐶𝑞  𝑎𝑛𝑑 𝐶𝑠 𝑎𝑟𝑒 0.9 𝑎𝑛𝑑 0.17, 

respectively. 𝑞 is the kinetic energy of the resolved 

fluctuations. An explicit second filter width of Δ̂ =

2∆ is applied to the cut-off length scale to compute 

𝑞 . It is then found from  

 

𝑞 =
1

2
(𝑢𝑖̅ − 𝑢̂̅𝑖)(𝑢𝑖̅ − 𝑢̂̅𝑖) (20) 

The parameter α controls the relative strength of 

small and large scales. It is typically set to 0.5. For 

α = 0 model gives 𝜇𝑠𝑔𝑠 = ρ̅(𝐶𝑚Δ)𝑞1/2. On the 

other end, Smagorinsky model without wall-

damping is obtained with α = 1 and finally the 

model becomes independent of the cut-off length Δ, 

if α = −1 is used. 

 

Lastly, a novel buoyancy-modified sgs model is also 

proposed based on the MS to account for the 

buoyancy effects in unstably stratified thermal flows 

in which buoyancy enhances turbulence. The new 

buoyancy-modified MS (BM-MS) model computes 

𝜇𝑠𝑔𝑠 using  

 

𝜇𝑠𝑔𝑠

= ρ̅𝐶𝑚Δ1+α (|𝑆̅|2 

−
1

𝐹𝑟2𝑃𝑟𝑠𝑔𝑠

∂𝑇̃

∂𝑥𝑗
δ2𝑗)

1/2

𝑞(1−α)/2 

(21) 

This formulation was obtained via enhancing the 

shear production of turbulent by buoyancy, 

following the ideas of Eidson (1985). The model 

reverts to the original MS for thermally unstratified 

flows.  

 

2.3 Solution algorithm 

Recently proposed, co-located, non-dissipative, fully 

implicit, kinetic energy conserving, finite-volume, 

LES algorithm is employed to solve the above set of 

equations (Yilmaz et al. 2018). The algorithm is the 

extended version of the DNS algorithm by Hou and 

Mahesh (2005) to LES. It is based on a low-Mach 

number, compressible formulation with variable 

density and dynamic viscosity. It is an iterative 

predictor-corrector approach based on pressure-

correction. It is second-order accurate in both space 

and time on uniform Cartesian grids. 

Thermodynamic variables are also staggered in time 

from kinematic variables. The face-normal velocity 

is treated as a separate flow variable and computed 

using projection. A weighted pressure variable is 

used for fully implicit treatment. A convergence 

speed-up procedure is also implemented. Further 

details of the algorithm and solution procedure can 

be found in the above references. 
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2.4. Flow Solver 

The in-house LES solver used in this study employs 

the numerical method described above. It is a fully 

implicit solver. It is completely written and 

parallelized with the object-oriented parallel 

programming library, the Portable, Extensible 

Toolkit for Scientific computation (PETSc), 

developed by Balay et al. (1997).  

Domain decomposition and parallel data 

management are handled by the Distributed Array 

(DA) structure in PETSc. Linear systems arising from 

the fully implicit discretization are first 

preconditioned by zero-filled incomplete-Lower–

Upper (iLU) method, then efficiently solved by the 

Generalized Minimal Residual method (GMRES) 

provided by the Krylov Subspace (KSP) component 

in PETSc.  

Models given in Sec. 2 were carefully implemented 

into this in-house solver. 

 

3. Problem Description and Numerical Setup 

RBC occurs when a horizontal layer of fluid between 

plates is heated from below and cooled from above 

(Getling 1998). It is an example of buoyancy-driven 

instability and plays an important role in many 

natural and industrial flows. Astrophysical flows 

(such as solar interiors), atmospheric flows, cooling 

flows (in nuclear reactors), fire, combustion and 

geophysical flows can be given as examples.  

The Rayleigh number is the primary dimensionless 

quantity defined as  

𝑅𝑎 =
ρ𝑔β𝛥𝑇𝐻3

μκ
 (22) 

where κ is the thermal diffusivity coefficient. Ra 

indicates the relative strength of the heat transfer 

modes and controls the flow evolution. Also, it 

determines the character of the convective 

turbulence at later times (weak or strong). The 

temperature difference ∆ 𝑇 is set to 30 K. Note that 

this is a large value and corresponds to the 

beginning of the non-Oberbeck-Boussinesq (OB) 

regime described by Gray and Giorgini (1976) which 

cannot be properly handled by the numerical 

methods that rely on OB assumption. However, the 

present method is  𝑅𝑎 is set to 6. 3 × 105. This 

corresponds to a relatively weak (soft) turbulent 

convection. Air is chosen as working fluid. The flow 

field is initially described as follows 

𝑢, 𝑣, 𝑤  =  0 

𝜌 = 𝜌0 (1 + β (
Δ𝑇

𝐻
) 𝑦) 

𝑝 = 𝑝0 − ρ𝑔𝑦 

𝑇 = 𝑇0 − (
𝛥𝑇

𝐻
) 𝑦  

(23) 

H is the extent of the domain and taken as the 

reference length. 𝑢𝑐 = √𝑔β𝛥𝑇𝐻 is the convective 

velocity scale. τ𝑐 =
𝐻

𝑢𝑐
 is the convective time scales. 

Horizontal (stream-wise (x) and the span-wise (z) 

boundary conditions are periodic. Top and bottom 

boundaries are no-slip walls.  

The ratio of the width to the height of the domain is 

4. The grid resolution is 64 × 96 × 64. The smallest 

length scale (usually attributed to Kolmogorov) can 

be predicted as  

η

𝐻
=

√𝑃𝑟

[(𝑁𝑢 − 1)𝑅𝑎]
1
4

 (24) 

It approximately gives 0.0188 for 𝑅𝑎 = 6.3 × 105. 

The vertical grid resolution is 𝛥𝑦 = 0.0104  in the 

simulation and smaller than the above estimation. 

Note that no grid stretching is applied, and the 

domain interiors are resolved by the same fine 

resolution in the vertical direction. In case of 

turbulent convection, the minimum cell size for LES 

can be approximately determined using  

 

𝜆

𝐻

=  
√15 √0.0027𝑅𝑎1.04 + 0.0312𝑅𝑎0.92

[(𝑁𝑢 − 1)𝑅𝑎]
1
2

 
(25) 

that gives 0.1342 (Peng et al. 2006). The horizontal 

grid spacings 𝛥𝑥  =  𝛥𝑧  = 0.0625  also satisfy the  
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above theoretical resolution requirement. The 

thermal boundary layer thicknesses can be 

approximated as  
λT

H
=  

1

2Nu
  =  0.0676. At least 6 −

7 cells are placed in the thermal boundary layers 

which is quite sufficient for proper resolving of 

thermal structures. In the above calculations, 𝑁𝑢 =

0.186𝑅𝑎0.276 scaling obtained by DNS was used 

(Kerr 1996).  Evolution of the flow field was tracked 

up to 2100τ𝑐 . This is sufficiently long to obtain 

correct statistics which were collected at least 

during the last one-third period (Silano et al. 2010). 

Schematic representation of the problem domain, 

boundary conditions, grid spacing, and length scales 

are given in Fig. 1. In Fig. 2, initial distribution of 

temperature and rapid development of well-

organized of flow structures at 84 𝜏𝑐  are provided by 

means of iso-surfaces.  

 

4. Results and Discussion 

Assessment and comparison of sgs models are made 

based on various mean and turbulent statistics. 

Fluctuating quantity of a variable is found using 

ϕ′ = ϕ − ⟨ϕ⟩. Corresponding root mean square 

(𝑟𝑚𝑠) value is then calculated as ϕ𝑟𝑚𝑠 = ⟨ϕ′2
⟩

1/2
 

where ⟨ ⟩ denotes the time- and space-averaging 

over the horizontal directions. Some  

  

Figure 1. Schematic representation of the problem domain and boundary conditions (left), and the grid spacing in    

comparison with the length scales (right)   

   

   

Figure 2. Initial temperature field (left), organization of flow field at very early times (middle) and  corresponding hot 

(red) and cold (blue) iso-surfaces on default (top figures) and fine grids (bottom) 
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Figure 3. Instantaneous temperature fields (left column) and iso-surfaces of hot (red), cold (blue) and 

intermediate (gray) temperatures (right column) at time 840 𝜏𝑐 . Models are SmaWD, DynSma, WALE, 

Vreman, MS and BM-MS from top to bottom, respectively. 
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further derived diagnostics such as skewness, 

turbulent heat flux, sgs kinetic energy and Nusselt 

number (Nu) are also computed. DNS results (where 

available) are provided as reference for comparison 

and evaluation.  

 

Fig. 3 shows and compares the instantaneous 

temperature fields and corresponding iso-surfaces 

by means of three specified values. Initially well-

organized large-scale coherent flow structures 

cannot sustain themselves and rapidly evolve into a 

chaotic state due to strong thermal motions.  

Complex and challenging physics of RBC 

characterized by strong thermal upward and 

downward motions and large-scale coherent 

structures are qualitatively well-captured by all 

models. Since instantaneous snapshots were taken 

at a specified time, each model gives different 

intensities. This is also a sign that models have some 

quantitative differences in their predictions which 

will be detailed in the following analysis. 

 

Fig. 4 shows variation of the mean resolved 

temperature and diffusive flux along the normal-

wise direction. Large portion of the domain is 

characterized by a single mean temperature value. 

As approaching walls, it starts to deviate from mean 

and converges the wall temperature. In general, this 

distribution is well-predicted by the models without 

any noticeable difference, except ignorable small 

differences observed only near walls. The diffusive 

flux is represented by large  

gradients away from the bulk, as expected. 

Although overall predictions are close to each other, 

sgs models employing kinetic energy of the resolved 

fluctuations at a secondary cut-off filter (ie., MS and 

BM-MS) capture the wall effect earlier than the 

others and give a rapid response.  

 

The normal-wise distribution of rms of temperature 

and vertical velocity fluctuations are plotted in Fig. 

5. 𝑇𝑟𝑚𝑠  is characterized by near-wall peaks which 

are regarded as thermal boundary layers and a large 

sink at the center where thermal fluctuations are 

weakened, and temperature field is relatively more 

isotropic. This structure is sufficiently well-captured 

by the models. The newly  

 

 

 

 
Figure 4. Normal-wise distributions of the resolved 

mean temperatures (top) and corresponding 
gradients (ie., diffusive fluxes) along vertical 
direction (middle) in comparison with the 
reference DNS (Wörner 1994). A close-up 
view for diffusive fluxes is also given (bottom) 
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Figure 5. Normal-wise distributions of the normalized 

rms of temperatures (top) and vertical 
velocity                fluctuations (bottom) in 
comparison with the reference DNS (Wörner 
1994). 

 

proposed BM-MS gives the closest solution to DNS, 

which points out an improvement over MS. 

 

However, both models predict slightly thicker 

thermal boundary layers. A closer look shows that 

the best estimation for the peak value and its 

location near hot wall is given by WALE, and near 

cold wall, by SmaWD. DynSma unexpectedly fails to 

predict the peak values. However, peak location  

estimations are acceptable. Inside thermal 

boundary layers (from peaks to the walls) where 

large thermal gradients exist, sgs models closely 

follow DNS solution.    

 

𝑣𝑟𝑚𝑠  is another important low-order turbulent 

statistic. Accumulation around center indicates 

strong and intense interactions between hot 

updrafts and cold downdrafts. Similar to 𝑇𝑟𝑚𝑠 , this 

behavior is also recognized by all models. MS and its 

new buoyancy-modified variant BM-MS positively 

separate from the others and give results closer to 

DNS. In fact, an improvement is obtained by BM-MS. 

Its result is in better agreement with DNS. A closer 

inspection shows that Vreman and DynSma 

estimate the lowest velocity fluctuations, especially 

in the core region.  

 
Figure 6. Normal-wise distributions of the sgs kinetic 

energy in comparison with the reference DNS 
(Wörner 1994). 

 

The sgs kinetic energy can be computed as  𝑘 =
1

2
(𝑢ℎ𝑟𝑚𝑠

2 + 𝑣𝑟𝑚𝑠
2 ). 𝑢ℎ𝑟𝑚𝑠  is the rms of the combined 

horizontal velocity calculated as  𝑢ℎ𝑟𝑚𝑠 =

√𝑢𝑟𝑚𝑠
2 + 𝑤𝑟𝑚𝑠

2  where 𝑤𝑟𝑚𝑠 is the rms of the span-

wise velocity component. 𝑘 is plotted in Fig. 6. At the 

center of the domain, all models fail. Rather than 

being a weakness (since it is observed in all models), 

this situation can be associated to relatively low grid 

resolution in horizontal directions compared to 

DNS. A similar observation was made by Peng et al. 

(2006). It is obvious from the equation of 𝑘 above, 

not sufficient contribution comes from the stream-

wise and span-wise velocity rms values. However, 

near wall region 𝑘 distribution is sufficiently 

captured. A detailed look shows that SmaWD and 

DynSma have largely asymmetric behavior near hot 

and cold walls. They slightly over-estimate 𝑘 near 
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hot (bottom) wall. WALE shows a symmetric 

behavior. However, it slightly under-estimates 𝑘 

near walls. Vreman agrees well with DNS away from 

center. MS has also asymmetric distribution and 

slightly under-estimates 𝑘 near cold (top) wall. BM-

MS agrees with DNS (except bulk) with a sink lower 

(better) than that of Vreman. This result also 

indicates an improvement provided by the 

buoyancy enhancement.  

 
Figure 7.  Distributions of skewness in comparison with 

the ref. DNS (Moeng and Rotunno  1990). 
 

Skewness which is given in Fig. 7 is a high-order 

turbulent diagnostic derived based on vertical-

velocity fluctuations via 

𝑆𝑣′ = ⟨𝑣′3
⟩/⟨𝑣′2

⟩
3
2 (26) 

It is characterized by a local maximum and minimum 

near top (cold) and bottom (hot) walls. Positive 

skewness corresponds to regions dominated by cold 

and slowly moving downward plumes that surround 

hot and fast upward plumes. There is a balance in 

the strength of vertical velocity fluctuations around 

the center, described by zero skewness. However, 

the physics of the flow is reversed as approaching 

the bottom wall. All sgs models are able to correctly 

describe the above-mentioned flow physics and in 

agreement with DNS. There is no noticeable 

difference among them. Ignorable small deviations 

near cold wall are observed in all models.  

 

Turbulent heat flux distribution in Fig. 8 is best 

estimated by DynSma. One more time, sgs models 

based on MS show different character and predict 

larger values.   

  

 
Figure 8. Normal-wise distributions of the turbulent 

heat fluxes in comparison with the reference 
DNS (Wörner 1994). 

 

 
Figure 9. Normal-wise distributions of the sgs levels 

 

Time and space-averaged sgs levels are presented 

and compared in Fig. 9. MS and its buoyancy-

modified variant have the largest predictions which 

are approximately three times larger than the 

others. The effect of enhancement by 𝑞 is observed 

here. Also, they are seperated from the others by 

increasingly larger sgs levels near walls. Vreman 

gives the straightest distribution. The differential 

operator that Vreman uses to compute μ𝑠𝑔𝑠 is  
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Figure 10. Normal-wise distributions of the resolved strain rate components for each sgs model 
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structurally the most different one among the 

constant coefficient models and does not directly 

rely on the strain rate tensor to which the other 

models are somehow related. Unlike Vreman, 

DynSma is described by strong fluctuations. This 

shows that dynamic computation of μ𝑠𝑔𝑠 is quite 

sensitive to local variations and gives rise an 

oscillatory behavior. WALE and SmaWD have similar 

structural behaviors. 

 

To gain a deeper insight, components of the strain 

 rate tensor are also computed for each model and 

given in Fig. 10 The results reveal that 𝑆22's are 

nearly identical in all models and the cross-

components 𝑆21 and 𝑆23 are primarily responsible 

for the jumps. Also, for the constant coefficient 

models, when 𝑆21 and 𝑆23 patterns are coherent, 

models give straighter 𝜇𝑠𝑔𝑠 distribution. In case of 

large discrepancies, strength of fluctuations 

increases.   

 

 
Figure 11. Normal-wise distributions of the Nu 

 

Fig. 11 plots the Nu in the normal-wise direction 

which is computed as 

 

𝑁𝑢(𝑦) =
< 𝑣′𝑇′ > −< κ ∂𝑇̃/ ∂𝑦 >

κΔ𝑇/𝐻
 (27) 

It gives the relative strength of heat transfer 

mechanisms. In the bulk, Nu distribution is straight. 

Approaching the walls, effect of the strong 

temperature gradients can be observed. MS and 

BM-MS have larger predictions consistently with 

turbulent heat and diffusive fluxes. These two 

models have also symmetric character near walls. 

However, others present asymmetric distribution. 

SmaWD has also additional, secondary jumps. 

DynSma's pattern is noticeably different. It is overly 

sensitive to the local changes on the edge of thermal 

boundary layers. This may be associated to its locally 

dynamic coefficient feature.  

 
Table 1. The integrated Nu  
 

SGS model Nu 

SmaWD 7.12 

DynSma 6.98 

WALE 7.09 

Vreman 7.06 

MS 7.37 

BM-MS 7.46 

DNS, Kerr (1996) 7.41 
 

 

The normal-wise distribution of Nu can also be 

integrated using the trapezoidal rule to give a single 

representative value. Table 1 lists the values 

obtained by the models in comparison with well-

resolved DNS (Kerr 1996). MS and BM-MS give the 

best estimations. 

 

Table 2. Wall-clock times normalized by the simulation              

time without using a model 

SGS model Simulation Time 

SmaWD 0.93 

DynSma 1.17 

WALE 0.98 

Vreman 1.04 

MS 0.87 

BM-MS 0.87 
 

 

Comparison of the computational cost by means of 

simulation times is given in Table 2. Results are 

normalized by "No Model" wall-clock time on the 

same grid resolution. As expected, DynSma is the 

most expensive model computationally. The fastest 

models are MS-based models. Computational gain is 

quite satisfactory. 

 

To reveal the whole character of the newly 

proposed BM-MS sgs model, a grid dependence 

study was also conducted on a fine grid. For this  
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Figure 12. Turbulent statistics improved on fine grid; 

sgs viscosity (top), diff. heat flux (middle) and 

its close-up view near walls (bottom)  

 

purpose, the grid was horizontally refined. The 

resolution is now  963. 

 

It was found that the new model is sensitive to grid 

resolution. While some statistics such as sgs 

viscosity in bulk and diffusive heat flux near walls in 

Fig. 12 were improved, most of the others 

presented in Fig. 13 were amplified and 

overpredicted by a level (except Trms). The average 

temperature and skewness given in Fig. 14 showed 

no dependence.  It seems that two mechanisms on 

fine resolutions are determinative, ie., capturing 

more fluctuations and accumulation of errors. They 

affect and shape the overall response. Although a 

robust model should not significantly depend on 

resolution, it is known that many models inevitably 

suffer from the above factors. This situation is not 

particular to BM-MS. 

Grid dependence study reveals that the proposed 

sgs model can produce results comparable to DNS, 

if grid is generated carefully to avoid the common 

pitfalls mentioned above. Additionally, 𝑃𝑟𝑠𝑔𝑠  

approaching to unity can also be used as an efficient 

fine-tuning parameter.   

5. Conclusions 

An investigation on the behavior of sgs models for 

LES modeling of turbulent natural convection was 

performed in this study. The results were also 

compared with each other and reference DNS 

solutions. The RBC problem was selected for this 

purpose. RBC is driven by strong motions of thermal 

plumes and characterized by large scale coherent 

rotational structures and secondary interactions. 

 

It rapidly undergoes transition to turbulence over 

time. From the numerical perspective, this scenario 

is very challenging and serves as a solid test bed.  

 

The selected models were algebraic eddy viscosity 

models. There are differences in the turbulent 

generation terms. SmaWD uses the strain rate 

tensor. WALE is based on an improved form of it. 

Vreman's term has a unique combination of cross-

derivatives of velocity. MS has a form enhanced by 

the resolved fluctuations. MS is further enhanced by 

buoyancy turbulent generation. To the author’s best 

knowledge, this modification is proposed for the 

first time in the literature. DynSma, unlike the 

others, uses a dynamic coefficient to capture the  
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Figure 13. Turbulent statistics showed dependence on grid resolution; rms of temperature (top-left) and vertical 

velocity fluctuations (top-right), turbulent heat flux (middle-left), turbulent kinetic energy (middle-right), and 

vertical distribution of Nu (bottom) 
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Figure 14. Turbulent statistics showed no dependence 

on grid resolution; average temperature (top) 

and skewness (bottom) 

 

local effects. All the models were implemented into 

an in-house solver based on a recently proposed, 

advanced and efficient LES algorithm detailed 

above. 

 

From the results obtained, the following conclusions 

can be drawn. Although all the models were overall 

able to reproduce the complex physics and 

evolution of RBC, various low- and high-order 

turbulent diagnostics and derived quantities 

computed have revealed some important 

differences among the models.  

 

MS-based ones have treated the large temperature 

gradients (ie., resolved diffusive flux) near walls in a 

different way which improves the calculation of Nu. 

They were also good at estimating the first-order 

turbulent statistics such as 𝑉𝑟𝑚𝑠  and 𝑇𝑟𝑚𝑠 . 

Moreover, newly proposed buoyancy-modifient 

variant, BM-MS has predicted slightly better. As 

another advantage, they are numerically 

inexpensive. 

 

All models were strongly affected by the grid 

resolution (which was relatively lower than that of 

DNS) and failed in predicting sgs kinetic energy in 

the bulk region. However, near-walls were well 

resolved, and sufficient results were produced by 

the models.  

 

The derived quantity based on the high-order 

velocity moments, skewness, was equally well-

captured.  

 

Models, other than the ones based on MS, have 

performed well in predicting turbulent heat flux in 

comparison with DNS. 

 

An asymmetric behavior was shown near walls for 

thermal diagnostics. It was characterized by the 

differences in peak values and locations. This 

indicates that model's predictions on the thermal 

boundary layer properties have some differences. 

Some complex patterns, described by fluctuations 

ranging low to moderate, were observed for the 

μ𝑠𝑔𝑠 level estimations. DynSma had the largest 

ones, while Vreman did not have any.  Additionally, 

MS-based models estimated larger sgs levels. 

Improved Nu predictions were also made by the 

same models, when compared to DNS. 

 

An additional grid dependence study for the 

proposed BM-MS sgs model was also performed. It 

was found that the model showed moderate 

dependence on resolution. However, on a well-

balanced grid, it is capable of predicting the mean 

and turbulent quantities correctly. 

 

It is known that at high Ra numbers the physics of 

RBC considerably changes, and more complex flow 

features are observed. Considering this fact, further 

analysis may be required to reveal complete 
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behavior and full potential of the models for 

problems with strong thermal convection. 
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