İç mekân aydınlatma sistemlerinde ortalama aydınlık düzeyinin yapay sinir ağları ile tahmini
Citation
Şahin, M. (2019). İç Mekân Aydınlatma Sistemlerinde Ortalama Aydınlık Düzeyinin Yapay Sinir Ağları İle Tahmini . Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi , 19 (2) , 348-360 . Retrieved from https://dergipark.org.tr/tr/pub/akufemubid/issue/48783/522086Abstract
Bir aydınlatma sistemi ilk kurulum aşamasında ne kadar iyi tasarlanırsa tasarlansın, zamana bağlı olarak ortam içerisindeki aydınlık düzeyi azalmaktadır. Bu azalmanın başlıca sebepleri; aydınlatma elemanlarındaki ışık akısı azalması, lambaların arızalanması, aydınlatma elemanlarındaki kirlenmeler, duvar yüzeylerindeki kirlenmeler ve tozlanmalar şeklinde sıralanabilir. Aydınlık düzeyindeki bu azalma yavaş yavaş ve sürekli olduğu için gözle fark edilmez. Söz konusu azalmalar belirli bir düzeye indiğinde ise görme yeteneği azalmakta ve buna bağlı olarak ta iş kazaların artmaktadır. Tüm bu olumsuzluklara engel olabilmek için aydınlatma sistemine doğru zamanda müdahale edilerek gereken bakımın yapılması şarttır. Bakım zamanın belirlenmesi için ise ortam içerisinde çok sayıda noktada aydınlık düzeylerinin ölçümünün yapılması gerekmektedir. Bu ölçümlerden faydalanılarak ortalama aydınlık düzeyi (E_ort ) hesaplanır ve bakım zamanını gelip gelmediğine karar verilir. Bu bilgiler doğrultusunda çalışmada, E_ort değerinin tahmini için Yapay Sinir Ağı (YSA) kullanılmıştır. Yapılan tahminler sayesinde hem bakım zamanının tespiti kolaylaşmış hem de ışığa dönüşmeyen enerji yüzdesi kolaylıkla saptanmıştır. Bu sayede aydınlatma sistemine zamanında müdahale olanağı sağlanmış ve iyileştirilmelere gidilmiştir. Yapılan bu iyileştirmeler neticesinde ışığa dönüşmeyen enerji kaybının önüne geçilmiştir. No matter how well designed is the initial installation phase of an illumination system, the level of luminousness in an environment decreases depending on the time. The major reasons of this decrease can be listed as the decrease in the luminous flux in lighting equipments, failures in lamps, getting dirty of lighting equipments, dirtiness and dust on wall surfaces. This decrease in the level of luminousness is not visible to eyes since it is slow and continuous. When this decrease reaches to a particular level, the ability to see decreases, as well and the amount of occupational accidents increase accordingly. In order to prevent these unfavorable things, illumination system should be responded in time and necessary maintenance should be performed. In order to determine maintenance period, level of lighting should be measured in several spots. By utilizing these measurements, average lighting level (E_ort ) is measured and whether it is the maintenance date or not is determined. In accordance with this information, in this study, artificial neural network (ANN) is used to estimate the E_ort value. Through these estimations, the determination of maintenance date got easier and the percentage of the energy that is transformed into light was determined easily. In this way, the chance to respond to illumination system in time was provided and improvements were performed. As a result of these improvements, energy loss that is not transformed into light was prevented.
Source
Fen ve Mühendislik Bilimleri DergisiVolume
19Issue
2Collections
- Cilt 19 : Sayı 2 [25]