EEG işaretlerinin Hilbert Huang dönüşümü ve sınıflandırılması
Citation
Akgün, G. & Akgün, Ö. (2022). EEG İşaretlerinin Hilbert Huang Dönüşümü ve Sınıflandırılması . Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi , 22 (6) , 1323-1333 . DOI: 10.35414/akufemubid.1145857Abstract
Bu çalışmada Elektroensefalogram (EEG) sinyallerinin analizi ve bu analiz üzerinden sınıflandırılması amaçlanmıştır. Bu amaçla EEG işaretleri Hilbert Huang metodu ile alt frekans bantlarındaki bileşenlerine ayrılmış, anlık frekans ve marjinal izge vektörleri elde edilmiştir. Bu vektörler ve bileşenler kullanılarak istatistiksel öznitelikleri çıkarılmıştır. Bu öznitelikler göz açık – göz kapalı , sağlıklı-epileptik ve epileptik nöbet alt sınıflarında incelenmiş, destek vektör makinesi (DVM), yapay sinir ağları (YSA) ve doğrusal ayrım analizi (DAA) algoritmaları ile sınıflandırılmış ve sonuçlar karşılaştırmalı olarak tartışılmıştır. The goal of this study is to classify the Electroencephalogram (EEG) signals through signal analysis. To achieve this, Hilbert Huang's method is used to decompose EEG signals into components in lower frequency bands, yielding instantaneous frequency and marginal spectral vectors. These vectors and components are then used to extract statistical features. These features are classified in the eye-open, eye-closed, healthy-epileptic, and epileptic seizure subclasses with the support vector machine (SVM), artificial neural networks (ANN), and linear discrimination analysis (LDA) algorithms, and the results are discussed in comparison.
Source
Fen ve Mühendislik Bilimleri DergisiVolume
22Issue
6URI
https://dergipark.org.tr/tr/pub/akufemubid/issue/73849/1145857https://hdl.handle.net/11630/11278
Collections
- Cilt 22 : Sayı 6 [25]