dc.contributor.author | Tortop, Şükrü | |
dc.contributor.author | Dündar, Erdinç | |
dc.date.accessioned | 2019-12-30T14:14:28Z | |
dc.date.available | 2019-12-30T14:14:28Z | |
dc.date.issued | 2018 | en_US |
dc.identifier.citation | Ş. TORTOP and E. DÜNDAR, “WIJSMAN I2 INVARIANT CONVERGENCE OF DOUBLE SEQUENCES OF SETS,” Journal of Inequalities and Special Functions, vol. 9, no. 4, pp. 90–100, 2018. | en_US |
dc.identifier.uri | http://185.67.178.74/ilirias/jiasf/repository/docs/JIASF9-4-8.pdf | |
dc.identifier.uri | https://hdl.handle.net/11630/7782 | |
dc.description.abstract | In this paper, we study the concepts of Wijsman invariant convergence, Wijsman invariant statistical convergence, Wijsman I2-invariant convergence (I^σ_W_2), Wijsman I∗_2-invariant convergence
(I^∗σ_W_2), Wijsman pstrongly invariant convergence ([W_2Vσ]_p) of double sequence of sets and investigate the relationships among Wijsman invariant convergence, [W2Vσ]p, I^σ_W_2 and I∗σ_W_2. Also, we introduce the concepts of I^σW_2-Cauchy double sequence and I^∗σ_W_2-Cauchy double sequence of sets. | en_US |
dc.language.iso | eng | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | I_2-Convergence | en_US |
dc.subject | Invariant Convergence | en_US |
dc.subject | Double Sequence of Sets | en_US |
dc.subject | Wijsman Convergence | en_US |
dc.title | Wijsman I_2-invariant convergence of double sequences of sets | en_US |
dc.type | article | en_US |
dc.relation.journal | Journal of Inequalities and Special Functions | en_US |
dc.department | Fen-Edebiyat Fakültesi | en_US |
dc.authorid | 0000-0002-0545-7486 | en_US |
dc.identifier.volume | 9 | en_US |
dc.identifier.startpage | 90 | en_US |
dc.identifier.endpage | 100 | en_US |
dc.identifier.issue | 4 | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.contributor.institutionauthor | Tortop, Şükrü | |
dc.contributor.institutionauthor | Dündar, Erdinç | |