Quasi-almost convergence of sequences of sets
Citation
Gülle, E. and Ulusu, U. (2017). Quasi-almost convergence of sequences of sets. Journal of Inequalities and Special Functions, 8(5), 59-65.Abstract
In this paper, we defined concepts of Wijsman quasi-almost convergence and Wijsman quasi-almost statistically convergence. Also we give the concepts of Wijsman quasi-strongly almost convergence and Wijsman quasi q-strongly almost convergence. Then, we study relationship among these concepts. Furthermore, we investigate relationship between these concepts and some convergence types given earlier for consequences of sets, as well
Source
Journal of Inequalities and Special FunctionsVolume
8Issue
5Collections
- Makaleler [90]
Related items
Showing items related by title, author, creator and subject.
-
I_σ-convergence
Nuray, Fatih; Gök, Hafize; Ulusu, Uğur (Department of Mathematics, University of Osijek, 2011)In this paper, the concepts of σ-uniform density of subsets A of the set N of positive integers and corresponding I_σ-convergence were introduced. Furthermore, inclusion relations between I_σ-convergence and invariant ... -
On quasi-lacunary invariant convergence of sequences of sets
Gülle, Esra; Ulusu, Uğur (International Conference on Analysis and Its Applications, 2018)In this study, we give definitions of Wijsman quasi-lacunary invariant convergence, Wijsman strongly quasi-lacunary invariant convergence and Wijsman quasi-lacunary invariant statistically convergence for sequences of sets. ... -
Asymptotically lacunary I_σ-equivalence of sequences of sets
Gülle, Esra; Ulusu, Uğur (2018)In this study, we introduce the concepts of Wijsman p-strongly asymptotically lacunary invariant equivalence ([W_{N_{θσ}}^L ]_p), Wijsman asymptotically lacunary I-invariant equivalence (W_{I_{σθ}}^L) and Wijsman asymptotically ...