dc.contributor.author | Sever, Yurdal | |
dc.contributor.author | Talo, Özer | |
dc.date.accessioned | 2020-01-06T19:25:10Z | |
dc.date.available | 2020-01-06T19:25:10Z | |
dc.date.issued | 2014 | en_US |
dc.identifier.citation | Sever, Y. and Talo, Ö. e-core of double sequences. Acta Mathematica Hungarica 144.1 (2014): 236-246. | en_US |
dc.identifier.uri | https://link.springer.com/article/10.1007/s10474-014-0447-8 | |
dc.identifier.uri | https://doi.org/10.1007/s10474-014-0447-8 | |
dc.identifier.uri | https://hdl.handle.net/11630/7944 | |
dc.description.abstract | Boos, Leiger and Zeller [1,2] defined the concept of e-convergence. In this paper we introduce the concepts of e-limit superior and inferior for
real double sequences and prove some fundamental properties of e-limit superior
and inferior. In addition to these results we define e-core for double sequences.
Also, we show that that if A is a nonnegative C e -regular matrix then the e-core of
Ax is contained in e-core of x, provided that Ax exists. | en_US |
dc.language.iso | eng | en_US |
dc.identifier.doi | 10.1007/s10474-014-0447-8 | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | Double Sequence Space | en_US |
dc.subject | E-Convergence | en_US |
dc.subject | E-Limit Superior and Inferior | en_US |
dc.subject | Core Theorem | en_US |
dc.title | E-core of double sequences | en_US |
dc.type | article | en_US |
dc.relation.journal | Acta Mathematica Hungarica | en_US |
dc.department | Fen-Edebiyat Fakültesi | en_US |
dc.authorid | 0000-0002-5102-1384 | en_US |
dc.identifier.volume | 144 | en_US |
dc.identifier.startpage | 236 | en_US |
dc.identifier.endpage | 246 | en_US |
dc.identifier.issue | 1 | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.contributor.institutionauthor | Sever, Yurdal | |