Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorAkçay, Mehmet Şamil
dc.contributor.authorTuna, Murat
dc.contributor.authorKoyuncu, İsmail
dc.contributor.authorAlçın, Murat
dc.date.accessioned2022-11-01T10:18:02Z
dc.date.available2022-11-01T10:18:02Z
dc.date.issued2019en_US
dc.identifier.citationKoyuncu, İ., Akçay, M. Ş., Tuna, M., Alçın, M., (2019). Implementation of IQ-Math-based Linear Activation Functions on FPGA. 1st International Congress of Multidisciplinary Studies and Research, Şanlıurfa, Türkiye, 114-124.en_US
dc.identifier.isbn978-605-7786-22-7
dc.identifier.urihttps://hdl.handle.net/11630/10184
dc.description.abstractNowadays, Artificial Neural Networks (ANN), which is one of the widely used fields of artificial intelligence, has been commonly used in many areas including regression, estimation, decision making, classification, image and voice recognition, nonlinear signal processing and chaotic oscillator design. ANN, implemented in two different ways as software-based and hardware-based, has features such as parallel signal processing and distributed information processing. Therefore, ANN is known as a structure that includes very intensive mathematical operations. Hardware-based ANN applications can be implemented using many different platforms. FPGA (Field Programmable Gate Array) chips, as one of these platforms, have parallel processing capacity with high operating speed. In this study, a Linear Activation Functions Library has been created by implementing 6 different linear activation functions on FPGA for real time ANN applications. The designs have been coded using VHDL (Very High Speed Integrated Circuit Hardware Description Language) in accordance with 32-bit (16I-16Q) IQ-Math number standard. All designs have been tested using Xilinx ISE Design Suite program. After the test phase, the implementations have been synthesized for Xilinx Kintex-7 FPGA chip. The chip statistics and performance analyses obtained from FPGA-based activation functions have been presented.en_US
dc.description.sponsorshipBu çalışma 19.FEN.BİL.14 proje numarası ile Afyon Kocatepe Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimi tarafından desteklenmiştir.en_US
dc.language.isoturen_US
dc.publisher1st International Congress of Multidisciplinary Studies and Researchen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectArtificial Neural Networksen_US
dc.subjectActivation Functionsen_US
dc.subjectIQ-Math Number Standarden_US
dc.subjectFPGAen_US
dc.titleImplementation of IQ-Math based linear activation functions on FPGAen_US
dc.title.alternativeIQ-Math tabanlı doğrusal aktivasyon fonksiyonlarının FPGA üzerinde gerçeklenmesien_US
dc.typeconferenceObjecten_US
dc.relation.journal1st International Congress of Multidisciplinary Studies and Researchen_US
dc.departmentFakülteler, Teknoloji Fakültesi, Elektrik-Elektronik Mühendisliği Bölümüen_US
dc.identifier.startpage114en_US
dc.identifier.endpage124en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.contributor.institutionauthorAlçın, Murat
dc.contributor.institutionauthorKoyuncu, İsmail
dc.contributor.institutionauthorAkçay, Mehmet Şamil


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster