Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.advisorYıldız, Mustafa Kemal
dc.contributor.authorUzun,Tuğba Yalçın
dc.date.accessioned2019-05-16T06:51:59Z
dc.date.available2019-05-16T06:51:59Z
dc.date.issued2018
dc.date.submitted2018
dc.identifier.urihttp://hdl.handle.net/11630/5854
dc.description.abstractKesirli hesabın geçmişi oldukça önceye dayanmaktadır. Kesirli mertebeli diferensiyel ve integrasyon kavramları, tam sayı mertebeli türev ve n katlı integrali genelleştiren kavramlardır. Bu kavramlar ilk olarak 17. yüzyılda Leibniz tarafından ortaya atılmış, sonrasında Euler, Lagrange, Abel, Liouville gibi birçok matematikçinin çalıştığı bir alan olmuştur. Dört bölümden oluşan bu çalışmada Reimann-Liouville ve Hadamard tipli genelleştirilmiş kesirli integrali α∈R,ρ∈R^+ ve f:(0,∞)→R olmak üzere 〖[J〗_ρ^α f](t)≔{■(∫_0^t▒〖K_ρ^α (t,η)f(η)dη,〗 & α∈R/Z_0^-@f(t),&α=0@∑_(i=1)^((-α))▒〖(A_((-α),i) (ρ))/t^((-α)ρ-i) (d/dt)^i f(t), 〗&α∈Z^- )┤ şeklinde tanımlanmıştır. Bu tanım daha önce Katugampola’nın yaptığı tanımdan yola çıkılarak elde edilmiştir. Çalışmanın ilk bölümünde kesirli türev kavramı hakkında genel bir bilgi verilmiş, ikinci bölümde çalışma için gerekli olan temel tanım ve teoremler verilmiştir. Üçüncü bölümde Reimann-Liouville ve Hadamard tipli genelleştirilmiş kesirli integrali ve türevi tanımlanmış ve temel özellikleri verilmiş, son bölümde ise bu kesirli türevi içeren diferansiyel denklemlerin çözümleri üzerinde durulmuştur.en_US
dc.description.abstractFractional calculus is based on a very long history. Fractional differential and integration are generalization of integer order derivative and n -times integrals. These notions were originally proposed by Leibniz in the 17th century and then many mathematician worked on this subject like Euler, Lagrange, Abel, Liouville. In this work, which is consisted of four chapters, Riemann-Liouville and Hadamard type generalized fractional integral defined by 〖[J〗_ρ^α f](t)≔{■(∫_0^t▒〖K_ρ^α (t,η)f(η)dη,〗 & α∈R/Z_0^-@f(t),&α=0@∑_(i=1)^((-α))▒〖(A_((-α),i) (ρ))/t^((-α)ρ-i) (d/dt)^i f(t), 〗&α∈Z^- )┤ where α∈R,ρ∈R^+ and f:(0,∞)→R. In the first chapter of this work, a general knowledge about the fractional derivative. In the second chapter of this work, some basic definitions and theorems, necessary for this work, are given. In the third chapter, Riemann-Liouville and Hadamard type generalized fractional integral and derivative are defined and basic features are given, in the last chapter focused on solution of Riemann-Liouville and Hadamard type generalized fractional differential equations.
dc.language.isoturen_US
dc.publisherAfyon Kocatepe Üniversitesi, Fen Bilimleri Enstitüsüen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectKesirli Türevleren_US
dc.subjectKesirli İntegraller
dc.subjectKesirli Diferansiyel Denklemler
dc.titleRiemann liouville ve hadamard tipli genelleştirilmiş kesirli diferansiyel denklemleren_US
dc.title.alternativeRıemann lıouvılle and hadamard type generalızed fractıonal dıfferentıal equatıonsen_US
dc.typedoctoralThesisen_US
dc.departmentAfyon Kocatepe Üniversitesi, Fen Bilimleri Enstitüsüen_US
dc.relation.publicationcategoryTezen_US


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

  • Doktora Tezleri [57]
    Fen Bilimleri Enstitüsü'ne ait Doktora Tezlerini içerir.

Basit öğe kaydını göster